Author: Arduini, G.
Paper Title Page
MOPO013 Suppression of Emittance Growth by Excited Magnet Noise with the Transverse Damper in LHC in Simulations and Experiment 508
 
  • W. Höfle, G. Arduini, R. De Maria, G. Kotzian, D. Valuch
    CERN, Geneva, Switzerland
  • V.A. Lebedev
    Fermilab, Batavia, USA
 
  The LHC transverse dampers initially build to control transverse instabilities are also a good remedy to suppress the oscillations causing emittance growth excited by electro-magnetic noises at the frequencies of betatron sidebands. To prevent the emittance growth excited by magnet noise using the damper this system has to have extremely low noise properties. The paper discusses simulation results on the effectiveness of the transverse feedback system to suppress such oscillations and the experimental results from a damper point of view as they were gained during the 2010 LHC run. Possible improvements in the damper system to enhance its effectiveness with respect to the suppression of emittance blow-up are also discussed.  
 
MOPS012 Optics Considerations for Lowering Transition Energy in the SPS 619
 
  • H. Bartosik, G. Arduini, Y. Papaphilippou
    CERN, Geneva, Switzerland
 
  Beam stability for high intensity LHC beams in the SPS can be improved by increasing the slippage factor, i.e. reducing the transition energy. In this paper, possible ways of modifying the optics of the SPS for lower transition energy are reviewed. In particular, a threefold increase of the slippage factor at injection can be achieved by decreasing the integer part of the tunes by 6 units. The properties of this new low-transition optics are compared with the nominal SPS optics, including working point and resonance behavior. Possible limitations are discussed.  
 
MOPS068 Localization of Transverse Impedance Sources in the SPS using HEADTAIL Macroparticle Simulations 757
 
  • N. Biancacci, G. Arduini, E. Métral, D. Quatraro, G. Rumolo, B. Salvant, R. Tomás
    CERN, Geneva, Switzerland
  • N. Biancacci, M. Migliorati, L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • R. Calaga
    BNL, Upton, Long Island, New York, USA
 
  In particle accelerators, beam coupling impedance is one of the main contributors to instability phenomena that lead to particle losses and beam quality deterioration. For this reason these machines are continuously monitored and the global and local amount of impedance needs to be evaluated. In this work we present our studies on the local transverse impedance detection algorithm. The main assumptions behind the algorithm are described in order to understand limits in reconstructing the impedance location. The phase advance response matrix is analyzed in particular for the SPS lattice, studying the different response from 90,180,270 degrees phase advance sections. The thin lenses scheme is also implemented and new analytical formulas for phase advance beating were derived. This avails us to put reconstructing lenses everywhere in the lattice, and to study their positioning scheme. Limits in linear response are analyzed. This sets the upper and lower limits in reconstruction to the phase advance measurement accuracy and the linear response regime limit.  
 
TUPZ003 Simulation of Electron-cloud Build-Up for the Cold Arcs of the LHC and Comparison with Measured Data 1801
 
  • G.H.I. Maury Cuna
    CINVESTAV, Mérida, Mexico
  • G. Arduini, G. Rumolo, L.J. Tavian, F. Zimmermann
    CERN, Geneva, Switzerland
 
  The electron cloud generated by synchrotron radiation or residual gas ionization is a concern for LHC operation and performance. We report the results of simulations studies which examine the electron cloud build-up, at injection energy, 3.5 TeV for various operation parameters In particular we determine the value of the secondary emission yield corresponding to the multipacting threshold, and investigate the electron density, and heat as a function of bunch intensity for dipoles and field-free regions. We also include a comparison between simulations results and measured heat-load data from the LHC scrubbing runs in 2011  
 
TUPZ015 Electron Cloud Parameterization Studies in the LHC 1834
 
  • C.O. Domínguez, G. Arduini, V. Baglin, G. Bregliozzi, J.M. Jimenez, E. Métral, G. Rumolo, D. Schulte, F. Zimmermann
    CERN, Geneva, Switzerland
 
  During LHC beam commissioning with 150, 75 and 50-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities or emittance growth, were observed. The main strategy to combat the LHC electron cloud relies on the surface conditioning arising from the chamber-surface bombardment with cloud electrons. In a standard model, the conditioning state of the beam-pipe surface is characterized by three parameters: 1. the secondary emission yield; 2. the incident electron energy at which the yield is maximum; and 3. the probability of elastic reflection of low-energy primary electrons hitting the chamber wall. Since at the LHC no in-situ secondary-yield measurements are available, we compare the relative local pressure-rise measurements taken for different beam configurations against simulations in which surface parameters are scanned. This benchmark of measurements and these simulations is used to infer the secondary-emission properties of the beam-pipe at different locations around the ring and at various stages of the surface conditioning. In this paper we present the methodology and first results from applying the technique to the LHC.  
 
TUPZ016 First Run of the LHC as a Heavy-ion Collider 1837
 
  • J.M. Jowett, G. Arduini, R.W. Assmann, P. Baudrenghien, C. Carli, M. Lamont, M. Solfaroli Camillocci, J.A. Uythoven, W. Venturini Delsolaro, J. Wenninger
    CERN, Geneva, Switzerland
 
  A year of LHC operation typically consists of an extended run with colliding protons, ending with a month in which the LHC has to switch to its second role as a heavy ion collider and provide a useful integrated luminosity to three experiments. The first such run in November 2010 demonstrated that this is feasible. Commissioning was extremely rapid, with collisions of Pb nuclei achieved within 55 h of first injection. Stable beams for physics data-taking were declared a little over one day later and the final integrated luminosity substantially exceeded expectations.  
 
THOBA01 Electron Cloud Observations in LHC 2862
 
  • G. Rumolo, G. Arduini, V. Baglin, H. Bartosik, P. Baudrenghien, N. Biancacci, G. Bregliozzi, S.D. Claudet, R. De Maria, J. Esteban Muller, M. Favier, C. Hansen, W. Höfle, J.M. Jimenez, V. Kain, E. Koukovini, G. Lanza, K.S.B. Li, G.H.I. Maury Cuna, E. Métral, G. Papotti, T. Pieloni, F. Roncarolo, B. Salvant, E.N. Shaposhnikova, R.J. Steinhagen, L.J. Tavian, D. Valuch, W. Venturini Delsolaro, F. Zimmermann
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
  • U. Iriso
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • N. Mounet, C. Zannini
    EPFL, Lausanne, Switzerland
 
  Operation of LHC with bunch trains different spacings has revealed the formation of an electron cloud inside the machine. The main observations of electron cloud build-up are the pressure rise measured at the vacuum gauges in the warm regions, as well as the increase of the beam screen temperature in the cold regions due to an additional heat load. The effects of the electron cloud were also visible as a strong instability and emittance growth affecting the last bunches of longer trains, which could be improved running with higher chromaticity and/or larger transverse emittances. A summary of the 2010 and 2011 observations and measurements and a comparison with existing models will be presented. The efficiency of scrubbing and scrubbing strategies to improve the machine running performance will be also briefly discussed.  
slides icon Slides THOBA01 [2.911 MB]