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Abstract 
The electron cloud generated by synchrotron radiation 

or residual gas ionization is a concern for LHC operation 
and performance. We report the results of simulation 
studies which examine the electron cloud build-up, at 
injection energy, 3.5 TeV for various operation parameters 
In particular we determine the value of the secondary 
emission yield corresponding to the multipacting 
threshold, and investigate the electron density, and the 
heat load as a function of bunch intensity for dipoles and 
field-free regions. We also include a comparison between 
simulation results and measured heat-load data from the 
LHC scrubbing runs in 2011. 

INTRODUCTION 
The electron cloud in the LHC is generated by 

photoemission when synchrotron-radiation photons hit the 
surface of the beam pipe, by ionization of the residual gas 
and, especially, by secondary electrons emitted from the 
vacuum chamber walls. The electron-cloud effect reduces 
the beam luminosity and degrades the quality of the 
beam. During the second half of 2010, phenomena related 
to an electron cloud were observed for the first time in the 
LHC, during operation with a beam of 150 ns bunch 
spacing. Namely at this bunch spacing a pressure increase 
was detected in the common beam pipes of the 
experimental areas. Soon thereafter, with a shorter bunch 
spacing of 75 and 50 ns, a heat load induced by the 
electron cloud was measured in the cold parts of the LHC 
ring, where the beams pass through separate vacuum 
chambers. 

SECONDARY ELECTRON YIELD 
One of the most important parameters for the electron 

cloud build-up is the secondary emission yield (SEY). An 
electron cloud is produced if the SEY of the metallic 
surface is high enough for electron multiplication [1]. The 
SEY describes the average number of secondary electrons 
emitted per incident electron. It is a function of the energy 
of the primary incident electron. The SEY is often 
characterized by its maximum value as a function of 
primary electron energy, for perpendicular incidence, 
which is called ax. The coefficient R designates the 
probability for an elastic electron reflection in the limit of 
zero primary energy (0 < R < 1). 

ELECTRON-CLOUD HEAT LOAD 
An electron-cloud related effect, which is expected to 

become relevant for future LHC performance at 25-ns 
bunch spacing, is the additional heat load on the beam 
screen inside the cold superconducting magnets due to the 
electrons, since this heat load, if sufficiently high, can 
provoke the quench of a superconducting magnet. The 
beam-screen heat load depends strongly on the energy, the 
bunch intensity, as well as the number and length of the 
circulating bunches [2]. An individual beam-screen 
cooling loop extends over 53 m (half an optical cell). 
Along this region there are dipoles, quadrupoles and short 
drifts sections. Due to some computing limitations, in this 
paper we report simulation results for dipoles and drift 
sections, i.e. we present average heat loads per unit length 
for a reduced half optical cell of 49.3 m length (that is, 
excluding the quadrupoles from the calculation).  

SIMULATION METHODOLOGY  
A first set of simulations, set A, was launched in order 

to determine the multipacting thresholds at injection and 
top energy for 50 ns bunch spacing. For this set we used 
the simulation parameters shown in Table 1.  As basic 
filling pattern we considered a pair of 2 batches of 36 
bunches each, with a batch spacing of 200 ns. This pattern 
was repeated up to 6 times, with a different, larger 
spacing between batch pairs. The reflectivity R was varied 
from 0.2 to 0.6. All the simulations were performed for a 
Gaussian bunch profile. 

Table 1: Summary of Simulation Parameters for Set A 

Parameter 450 GeV 3.5 TeV 

Bunch 
intensity 

                  1.2 x 1011 p/b 

SEY                   1.6 – 2.4 

Primary 
photoelectron 
emission 
yield 

 

    ---               

 

0.0001233 

Bunch length 11.8 cm 9 cm 

σx = σy 1.2 mm 0.3 mm 

Pressure 4.3x10-6 Pa --- 
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plot the multipacting thresholds for different bunch-
spacing values as a function of the reflectivity. We can 
conclude that for the present 50-ns bunch spacing, 
multipacting no longer occurs if the maximum secondary 
emission yield max decreases below about 2.2 (at a 
realistic value of R~0.25), while at 25-ns bunch spacing a 
max value below 1.4 is required to stop multipacting. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Simulated average arc heat load for 50 ns bunch 
spacing at a) injection energy and b) top energy. 

 
Figure 4: Heat load contour plot for 3.5 TeV beam energy. 

In Figure 6 we can see the results of the set D. As we 
can notice there is an increment of the electron volume 
density, (the central density computed inside a transverse 

circle of radius 1 mm and averaged over the whole 
simulation time) and after a decrement for high bunch 
intensities, except for a max =1.1, this latter seems to 
reach a saturation level after a bunch intensity of 8x1010.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5: Simulated multipacting thresholds as a function 
of the electron reflectivity at 3.5 TeV beam energy for 
three different values of bunch spacing. 

 
Figure 6: Average electron volume density for a dipole at 
25 ns bunch spacing and 7 TeV. 

CONCLUSIONS 
Simulated multipacting thresholds, heat loads, and 

central electron densities were reported for the LHC, 
considering different bunch spacings, filling patterns, and 
beam energies, as well as a varying maximum secondary 
emission yield δMax and electron reflectivity R. The results 
can be used to deduce actual vacuum-chamber surface 
parameters, δMax and R, from observations, such as the 
onset of multipacting-induced vacuum  degradation, heat 
loads in the cold arcs, and beam instability thresholds, and 
to make predictions for future LHC operation.  
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