Author: Matli, E.
Paper Title Page
MOPV010 Working under Pandemic Conditions: Contact Tracing Meets Technology 121
 
  • E. Blanco Viñuela, B. Copy, S. Danzeca, Ch. Delamare, R. Losito, A. Masi, E. Matli, T. Previero, R. Sierra
    CERN, Geneva, Switzerland
 
  Covid-19 has dramatically transformed our working practices with a big change to a teleworking model for many people. There are however many essential activities requiring personnel on site. In order to minimise the risks for its personnel CERN decided to take every measure possible, including internal contact tracing by the CERN medical service. This initially involved manual procedures which relied on people’s ability to remember past encounters. To improve this situation and minimise the number of employees who would need to be quarantined, CERN approved the design of a specific device: the Proximeter. The project goal was to design a wearable device, built in a partnership* with industry fulfilling the contact tracing needs of the medical service. The proximeter records other devices in close proximity and reports the encounters to a cloud-based system. The service came into operation early 2021 and 8000 devices were distributed to personnel working on the CERN site. This publication reports on the service offered, emphasising on the overall workflow of the project under exceptional conditions and the implications data privacy imposed on the design of the software application.
* Terabee. https://www.terabee.com
 
poster icon Poster MOPV010 [3.489 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV010  
About • Received ※ 11 October 2021       Revised ※ 26 October 2021       Accepted ※ 03 November 2021       Issue date ※ 18 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPV013 WRAP - A Web-Based Rapid Application Development Framework for CERN’s Controls Infrastructure 894
 
  • E. Galatas, A. Asko, E. Matli, C. Roderick
    CERN, Geneva, Switzerland
 
  To ensure stable operation of CERN’s accelerator complex, many Devices need to be controlled. To meet this need, over 500 custom Graphical User Interfaces (GUI) have been developed using Java Swing, Java FX, NetBeans, Eclipse SWT, etc. These represent a high maintenance cost, particularly considering the global evolution of the GUI technology landscape. The new Web-based Rapid Application Platform (WRAP) provides a centralized, zero-code, drag-n-drop means of GUI creation. It aims to replace a significant percentage of existing GUIs and ease new developments. Integration with the Controls Configuration Service (CCS) provides rich infrastructure metadata to support application configuration, whilst following the associated equipment lifecycle (e.g. renames, upgrades, dismantling). Leveraging the CERN Accelerator Logging Service (NXCALS) and the Unified Controls Acquisition and Processing (UCAP) platform, allows WRAP users to respectively, create GUIs showing historical data, and interface with complex data-stream processing. The plugin architecture will allow teams to further extend the tool as needed. This paper describes the WRAP architecture, design, status, and outlook.  
poster icon Poster THPV013 [1.564 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV013  
About • Received ※ 09 October 2021       Revised ※ 25 October 2021       Accepted ※ 10 December 2021       Issue date ※ 28 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)