
WRAP – A WEB-BASED RAPID APPLICATION DEVELOPMENT
FRAMEWORK FOR CERN’S CONTROLS INFRASTRUCTURE

E. Galatas∗, A. Asko† , E. Matli‡ , C. Roderick§, CERN, Geneva, Switzerland
Abstract

To ensure stable operation of CERN’s accelerator com-
plex, many Devices need to be controlled. To meet this need,
over 500 custom Graphical User Interfaces (GUI) have been
developed using Java Swing, Java FX, NetBeans, Eclipse
SWT, etc. These represent a high maintenance cost, par-
ticularly considering the global evolution of the GUI tech-
nology landscape. The new Web-based Rapid Application
Platform (WRAP) provides a centralized, zero-code, drag-n-
drop means of GUI creation. It aims to replace a significant
percentage of existing GUIs and ease new developments.
Integration with the Controls Configuration Service (CCS)
provides rich infrastructure metadata to support application
configuration, whilst following the associated equipment
lifecycle (e.g. renames, upgrades, dismantling). Leverag-
ing the CERN Accelerator Logging Service (NXCALS) and
the Unified Controls Acquisition and Processing (UCAP)
platform, allows WRAP users to respectively, create GUIs
showing historical data, and interface with complex data-
stream processing. The plugin architecture will allow teams
to further extend the tool as needed. This paper describes
the WRAP architecture, design, status, and outlook.

INTRODUCTION
Over the past decade, a large number of expert applica-

tions have been developed to provide a way of controlling
and monitoring thousands of Devices present within the
CERN accelerator complex. The need for control and data
visualization applies not only to production equipment, but
is also essential for developing and testing new Devices.
However, the ecosystem of technologies and platforms used
for the development of such applications is quite fragmented.
A lot of applications evolved organically based on individual
needs. At the same time, the desktop graphical application
tool kits traditionally used at CERN have evolved, whilst in
parallel facing a major decline of community interest over
the years. The Java Swing toolkit has been used since the
late 90’s, with Java FX coming on the scene several years
ago. Most recently, given the direction of Oracle’s support
for Java as a graphical user interface solution, PyQt has been
adopted for some graphical applications [1]. Unsurprisingly,
the proliferation of custom Graphical User Interfaces (GUI)
combined with an relatively rapid evolution of GUI technolo-
gies has lead to a worrying situation backed by extensive
technical debt.

Instead of forcing a large and diverse community at CERN
to continue learning new GUI technologies and develop their

∗ epameinondas.galatas@cern.ch
† anti.asko@cern.ch
‡ aemnuele.matli@cern.ch
§ chris.roderick@cern.ch

own applications, the following question was raised: ”Can
we turn the situation around and provide a central, data-
driven GUI platform, which experts can use to configure
their applications, based on their domain knowledge, without
worrying about how to develop, build, deploy, and maintain
it, using technologies which will undoubtedly continue to
evolve?”. A new Web-based Rapid Application Develop-
ment Framework (WRAP) was designed as the answer to
this question, and aims to replace many of the legacy appli-
cations over time. WRAP will provide a centralized solution
around a common platform, integrated with core Controls
sub-systems such as the Accelerator Logging Service (NX-
CALS) [2] and Controls Configuration Service (CCS) [3].
Since the inception of this project comes after years of ap-
plication development in the organization, there is a large
data-set of use-cases, feedback, and design decisions to anal-
yse and improve upon. Leveraging this knowledge can shape
WRAP into a single, unified solution for the vast majority
of use-cases.

PROJECT GOALS
There are currently over 500 custom Graphical User In-

terfaces (GUI) relating to Device control and corresponding
to different needs of Operation. Since WRAP encompasses
many diverse use-cases and clients, it is important to have a
clearly defined set of goals, based on which, decisions can
be made regarding individual features.

The most vital attribute WRAP must exhibit, is ease of
use. An intuitive User Interface (UI) is required, and beyond
improving user productivity, it must encapsulate the com-
plexity of Device modeling and communication. Wherever
possible no-code, drag-and-drop configuration should be
preferred, allowing experts without a programming back-
ground to work at a higher level. This level of abstraction
must not, however, come at the cost of performance. Many
parallel, real time visualizations should be supported.

Being a centralized service concentrates a lot of complex-
ity on the platform itself, creating a barrier that may inhibit
contributions from other teams. To offset this, contributions
will instead be supported through a plugin architecture. A
stable public application programming interface (API) will
be made available giving access to the core functionalities
of the platform. Those must in turn have high test coverage
and be very conservatively altered.

Lastly, WRAP should leverage device metadata from the
CCS to the highest possible degree. Not only does this re-
move redundant configuration steps, but also enables the
restriction of configuration options to only those that are
compatible with any given Device. This will help users to
configure applications within WRAP whilst avoiding config-
uration compatibility errors that typically stem from a lack

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV013

THPV013C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

894 User Interfaces and User eXperience (UX)



of detailed knowledge of the underling Device interfaces
and behaviour.

ARCHITECTURE OVERVIEW
The WRAP architecture (Fig. 1) needs to accommodate

the goals mentioned above, whilst also ensuring that it can
scale in terms of functionality, complexity and performance.
A clear separation between the rendering logic and under-
lying data management has to exist, while delegating some
key points of complexity to relevant CERN Controls sub-
systems.

The platform’s front-end (user interface layer), is created
using web technologies rather than as a native desktop appli-
cation. Running in a web browser removes cross-platform
compatibility concerns, simplifies distribution and updates,
and facilitates use from mobile devices. JavaScript’s ever
improving speed also removes the need for performance
trade-offs in order to facilitate the WRAP platform use cases.
Thanks to its immense popularity, the web stack appeals to
a lot of potential candidates applying to CERN, it provides
mature frameworks and UI design systems, and incorporates
comprehensive debugging tools. A high degree of flexibility
is also present; while the platform and most graphical wid-
gets are being developed in the Angular framework, 3rd party
widgets can utilize any preferred solution. These widgets
can then be bundled and integrated as native Web Compo-
nents. Web Components can encapsulate presentation and
behaviour in a custom HTML element, creating the basis of
a plugin architecture. Each widget has a specific, predefined
structure that is modeled in the WRAP database. This model
is used to validate widget states and to provide constraints
on what types of data can be visualized.

In order to provide actual Device data to be rendered and
processed, a variety of other Controls sub-systems are used.
The information about the available Devices and their data
structures is managed within the Controls Configuration
Service (CCS) [3] from where it is served to WRAP via a
REST API. After the desired Devices and their Properties are
identified, the WRAP back-end subscribes to live updates of
data values, using the CERN Java API for Parameter Control
(JAPC) [4]. As values become available, they are aggregated
and propagated from the WRAP server to corresponding
WRAP clients via HTTP/2 push events.

Device Evolution
As operational needs or underlying hardware evolve, cor-

responding Controls software Devices follow. This can mean
a simple change of Device name or a more complex change
of Device interface. A requirement for WRAP is to be re-
silient to such events by design. This is achieved by inte-
grating with the CCS and it’s Controls Configuration Data
Lifecycle (CCDL) manager [5]. Knowing the dependencies
between Device data and WRAP widgets, throughout all ap-
plications configured within WRAP allows a WRAP API to
be exposed to the CCDL. Using this API, the CCDL can in-
terrogate WRAP to check for compatibility of CCS changes

to Device configurations and, in most cases propagate the
changes to WRAP - automatically keeping the applications
working over time. Very complex changes such as data type
alterations or Device deletions will at least result in notifi-
cations to the relevant application owners in order that they
can make a manual intervention.

Historical Data
The architecture explained so far is able to visualize live

Device data, however historical values are also important.
For example, a graph widget would require data for the dis-
played time window to be pre-filled, before receiving updates
based on current values. The visualisation of historical data
is possible thanks to the integration with the CERN Accel-
erator Logging Service (NXCALS) [2], providing a unified
solution for logging of time-series data acquired from accel-
erator Controls Devices.

Data Processing
For some use cases, Device data requires some form of

processing before being displayed. This processing can
range from simple filtering of specific values to aggrega-
tions that involve a large number of data subscriptions and
require complex computations. The Unified Controls Ac-
quisition and Processing (UCAP) [6] framework provides
a means to facilitate and streamline acquisition and pro-
cessing of Controls data. Data from multiple Devices are
processed with pre-existing or user defined Python or Java
code, with incoming values aggregated based on the desired
event sourcing strategy. The result is then exposed as a
Virtual Device, for which WRAP can utilize the standard
infrastructure explained above to access Device metadata,
live data and historical values.

Fault Tolerance
Given the foreseen critical nature of WRAP as a service

(e.g. exposing critical GUI applications), it must have a high
degree of fault tolerance. The WRAP front-end is received
by the client as a Single Page Application (SPA). When
loading a user application instance within WRAP, metadata
has to be fetched in order to: render the included widgets,
establish data source subscriptions, and fill historical values
where necessary. Once initialized, WRAP applications only
depend on the back-end infrastructure to exchange values, for
which the corresponding server nodes are highly redundant.
In the event of failure, such as a Device disconnection, wrong
metadata, missing history, etc. parts of the application can
fail gracefully, providing appropriate information to the user,
without breaking the application as a whole.

CURRENT STATUS
WRAP development has now entered its second year. The

processes for structuring and saving user applications have
stabilized, and development is focused on adding editor fea-
tures and extending the widget library. In this section, some

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV013

User Interfaces and User eXperience (UX)

THPV013

895

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 1: WRAP architecture overview.

of the existing capabilities will be highlighted coupled with
some examples of finished products.

Figure 2 shows the WRAP editor. On the top, a tab-like list
of recently visited applications is present. These tabs allow
a fast navigation between applications. They also include
information about the application title and owner, as well as
an option to make a new copy - helpful when starting a new
application based on an existing one. When an application
owner enables the edit mode, a blue bar appears below with
options to alter the application name and description, make
it publicly visible, undo/redo functionality, and an option
to enable a scroll-able / report-like view (instead of being
limited to one screen).

On the left side is the Entry Point menu which allows
the lookup of Devices (with some additional filters). Once
a Device has been selected, a list of it’s Properties appear,
indicating the data type and additional flags dictating its
behaviour. A Property value can either be used to instantiate
a new widget that references it, or it can be assigned to
an existing widget. In both cases, constraints are applied
based on the correlation between the Property value type
and corresponding widgets (e.g. boolean, string or enum
can be shown on status indicators, numbers may be plotted
on a chart, etc.).

Selecting a widget on the central application canvas will
open a panel on the right side, from where the related at-
tributes can be modified. Widgets can also be grouped to-
gether, with the resulting group having a union of the aspects
of its children (Device source, colours, relative dimensions,
etc.). This effectively enables bulk copying, moving and
editing of related widgets. The bulk features around groups
can make it very efficient to configure applications showing

multiple aspects, of multiple Devices, of a similar type. For
such cases, the user configures the individual widgets for
a single Device, groups them together, copies them, then
changes the Device binding in bulk for all widgets in the new
group. Currently, the implemented widgets include graphs,
labels, and status indicators, with many others foreseen.

ADOPTION
At CERN there are around 60 so-called ”Fixed Displays”

or ”Vistars” which are applications that typically display
important information about the status of accelerator opera-
tions and specific systems. These critical applications, are
based on an aging custom framework, legacy Java Swing
technology, and domain specific code. They are under the
responsibility of a diverse group of people, who are only
involved with software as an occasional, part-time activity,
typically during periods of accelerator shutdown. It is not
feasible for such people to learn the latest graphical technolo-
gies in their spare time. This is one of several reasons that it
is foreseen to migrate all of these Fixed Display applications
to the WRAP platform, thus lowering the technical debt and
limiting the responsibility of the people associated with the
applications to the domain knowledge and not the software
maintenance.

A progressive migration of the Fixed Displays is already
underway. Figure 3 shows one such application related to the
LHC experiments. The applications created so far, aggregate
data from multiple Devices via UCAP, and then visualize the
resulting Virtual Device data from within WRAP. Currently,
an effort is placed on evaluating how these new applications
behave in the operational environment, while additionally

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV013

THPV013C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

896 User Interfaces and User eXperience (UX)



Figure 2: WRAP application builder.

evaluating possible cases of performance degradation or
improvements with respect to the legacy ones. In order
to give a desktop like experience, it is foreseen to evaluate
technologies such as Electron [7], in order to avoid launching
the WRAP applications via a full-blown web browser.

MAJOR CHALLENGES
As a system that combines many different services and pro-

vides solutions for very diverse use cases, WRAP presents
a number of technical challenges that have to be addressed.
Some of the most notable challenges currently experienced
when developing WRAP are listed below.

Scalability and Performance
CERN’s accelerator complex consists of hundreds of thou-

sands of Devices, some of which emit very large data sets
at very high frequencies. Creating visualizations that can
cope with such cases requires optimizations both on data
delivery and front-end (user interface) performance. Any
inefficiency in either, however small, will be magnified and
create bottlenecks in sufficiently complex user applications.
A number of strategies have been employed to counter this,
such as avoiding duplicate data subscriptions and bundling
rendering events. Despite this, thorough regression testing
will have to be incorporated for all widgets and major editor
features in order to guarantee consistent performance across
subsequent WRAP builds.

Evolving Technologies
Achieving stability on an evolving technological land-

scape is a challenge faced in all software. WRAP is particu-
larly exposed to this problem, as it has to follow the evolution
of not only 3rd-party front-end web frameworks and back-
end technologies, but also the CERN Controls sub-systems
with which it interacts. A consistent and well documented

API between different parts of the platform, and a modular
design across the entire stack, helps alleviate this problem.
Even if breaking changes cannot be avoided, affected parts
can be addressed separately, containing the scope of any
potential refactoring and improving the accuracy of related
cost estimations.

Web Limitations
As mentioned above, the web as an application run-time

provides a number of advantages with respect to native appli-
cations, including efficient development times, easier debug-
ging (especially around the visual elements), and a trivial
distribution of the final product. There are however, some
trade-offs that have to be considered.

The performance of complex applications on aging hard-
ware can degrade the user experience. For WRAP this
problem will become more apparent as more features are
requested and more sophisticated applications are created.
Solutions like Web Assembly and Web Workers have been
considered and seem promising in eliminating these prob-
lems in the future.

Web applications might sometimes be limited due their
inability to access native desktop features. They are also
perceived differently by end-users, when faced with loading
and running in a browser, instead of being installed as a
standalone application available via a shortcut. However,
all these point can be addressed by bundling WRAP with
Electron [7] allowing the same behaviour and access to na-
tive APIs as a traditional desktop application. This also
enables individual applications created within WRAP to be
accessible via distinct shortcuts.

Finally, some problems are inherently more difficult to
solve on the Web compared to native applications. For ex-
ample, installation and communication across multiple win-
dows, while possible, is a lot more involved. Creating multi-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV013

User Interfaces and User eXperience (UX)

THPV013

897

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 3: Example LHC Fixed Display implemented in WRAP.

windowed applications via WRAP is presenting a significant
challenge. However, the easier development of most of the
other parts of WRAP on the Web does, so far, greatly offset
the small subset of features that prove problematic. Choos-
ing any technology to build a sufficiently complex software
will invariably highlight some deficiencies in some aspects
of it.

NEXT STEPS AND FUTURE OUTLOOK
The aim is to use WRAP to replace as many as possible of

the hundreds of CERN accelerator controls standalone graph-
ical applications. From the outset, it is clear that WRAP,
which is a data-driven application, will not be suited to re-
place the most complex legacy applications. Nevertheless,
based on an in-depth analysis performed in 2020, it is ex-
pected that between 40-70 percent will be suited to WRAP.
This will clearly require a lot of features to be present in
the WRAP editor together with significant expansion to the
widget collection. It is expected that the gradual adoption of
WRAP by a large community will help establish collabora-
tions with other teams (certainly inside CERN, and hopefully
outside), which in turn can contribute improvements, exten-
sions or even just valuable feedback to help WRAP become
a more complete and useful end-product.

SUMMARY
WRAP introduces a new paradigm of developing applica-

tions for control and visualization of Device data. The new
platform has received a lot of interest from the user commu-
nity and, while development is at an early stage relative to
the ambitious goals that where initially set, early adopters
have shown promising results on the long-term viability of

the solution. The overall architecture, consisting of modern
and tested industry practices, coupled with the use of open-
source software used by large communities, will help ensure
the stability of the overall platform. WRAP is on-track to-
wards it’s objectives and it is expected that this endeavour
will pay off, helping to substantially reduce technical debt,
and minimising the need for diverse experts to acquire new
software application development skills, in order to develop
and maintain their graphical applications.

REFERENCES
[1] Z. Kovari et al., “New Timing Sequencer Application in Python

with Qt - Development Workflow and Lessons Learnt”, pre-
sented at ICALEPCS’21, Shanghai, China, Oct. 2021, paper
THPV015, this conference.

[2] J. Wozniak et al., “NXCALS - Architecture and Challenges
of the Next CERN Accelerator Logging Service”, in Proc.
ICALEPCS’19, New York, USA, Oct. 2019. doi:10.18429/
JACoW-ICALEPCS2019-WEPHA163

[3] L. Burdzanowski et al., “CERN Controls Configura-
tion Service — A challenge in usability”, in Proc.
ICALEPCS’17, Barcelona, Spain, Oct. 2017. doi:10.18429/
JACoW-ICALEPCS2017-TUBPL01

[4] V. Baggiolini et al., “JAPC - the Java API for Parameter Con-
trol”, in Proc. ICALEPCS’05, Geneva, Switzerland, Oct. 2005.

[5] B. Urbaniec, “CERN Controls Configuration Service –
Event-Based Processing of Controls Changes”, presented at
ICALEPCS’21, Shanghai, China, Oct. 2021, paper MOPV043,
this conference.

[6] L. Cseppentő et al., “UCAP: A Framework for Accelerator Con-
trols Data Processing at CERN”, presented at ICALEPCS’21,
Shanghai, China, Oct. 2021, paper MOPV039, this conference.

[7] Electron, https://www.electronjs.org

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-THPV013

THPV013C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

898 User Interfaces and User eXperience (UX)


