Author: Cook, N.M.
Paper Title Page
An integrated scheme for online correction of laser focal position  
  • N.M. Cook, S.J. Coleman, J.P. Edelen, R. Nagler
    RadiaSoft LLC, Boulder, Colorado, USA
  • S.K. Barber, J. van Tilborg
    LBNL, Berkeley, California, USA
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC 00259037.
High repetition-rate, ultrafast laser systems play a critical role in a host of modern scientific and industrial applications. We present a prototype diagnostic and correction scheme for controlling laser focal position for operation at 10s of Hz. Our strategy is to couple fast wavefront sensor measurements at multiple positions to generate a focal position prediction. We then train a neural network to predict the specific adjustments to adaptive actuators along the beamline to provide the desired correction to the focal position at 10s of ms timescales. Our initial proof-of-principle demonstrations leverage pre-compiled data and pre-trained networks operating ex-situ from the laser system. We then discuss the application of a high-level synthesis framework for generating a low-level hardware description of ML-based correction algorithms on FPGA hardware coupled directly to the beamline. Lastly, we consider the use of remote computing resources, such as the Sirepo scientific framework*, to actively update these correction schemes in the presence of new data
*M.S. Rakitin et al., ’Sirepo: an open-source cloud-based software interface for X-ray source and optics simulations," Journal of Synchrotron Radiation25, 1877-1892 (Nov 2018).
slides icon Slides THBR05 [1.342 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
FRBR02 An Integrated Data Processing and Management Platform for X-Ray Light Source Operations* 1059
  • N.M. Cook, E.G. Carlin, P. Moeller, R. Nagler, B. Nash
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.M. Barbour, M.S. Rakitin, L. Wiegart
    BNL, Upton, New York, USA
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC00215553.
The design, execution, and analysis of light source experiments requires the use of increasingly complex simulation, controls and data management tools. Existing workflows require significant specialization to account for beamline-specific operations and pre-processing steps in order to collect and prepare data for more sophisticated analysis. Recent efforts to address these needs at the National Synchrotron Light Source II (NSLS-II) have resulted in the creation of the Bluesky data collection framework*, an open-source library providing for experimental control and scientific data collection via high level abstraction of experimental procedures, instrument readouts, and data analysis. We present a prototype data management interface that couples with Bluesky to support guided simulation, measurement, and rapid processing operations. Initial demonstrations illustrate application to coherent X-ray scattering beamlines at the NSLS-II. We then discuss extensions of this interface to permit analysis operations across distributed computing resources, including the use of the Sirepo scientific framework, as well as Jupyter notebooks running on remote computing clusters**.
* M.S. Rakitin et al., Proc. SPIE 11493, Advances in Computational Methods for X-Ray Optics V, p. 1149311, Aug 2020.
** M.S. Rakitin et al., Journal of Synchrotron Radiation, vol. 25, pp. 1877-1892, Nov 2018.
slides icon Slides FRBR02 [8.627 MB]  
DOI • reference for this paper ※  
About • Received ※ 21 October 2021       Revised ※ 27 October 2021       Accepted ※ 20 November 2021       Issue date ※ 24 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)