

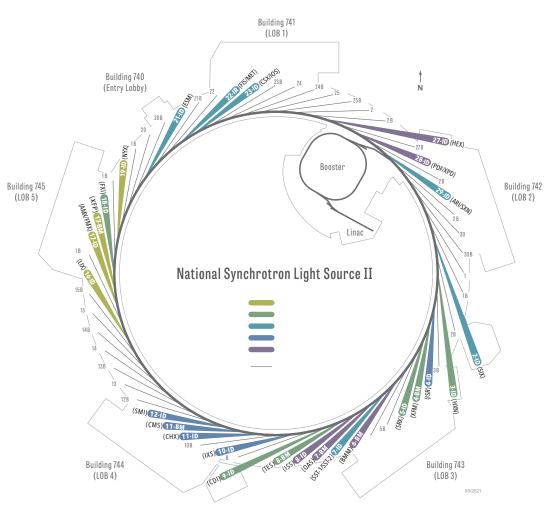
An integrated platform for high performance data management and analysis at X-ray light sources

Nathan Cook^{*a}, Evan Carlin^a, Paul Moeller^a, Rob Nagler^a, Boaz Nash^a Maksim Rakitin^b, Andi Barbour, ^b Lutz Wiegart^b

*ncook@radiasoft.net

ICALEPCS International Conference on Accelerator and Large Experimental Physics Control Systems 2021 October 22, 2021

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Award Number DE-SC0021553



Light source user facilities are technology drivers

- X-ray light sources enable multidisciplinary scientific breakthroughs
 - 30 facilities worldwide, more than 8,000 refereed publications and 6,000 protein structures per year
- National Synchrotron Light Source II (NSLS-II)
 - State-of-the-art "third generation" synchrotron light source
 - 28 active beamlines, with 60-70 anticipated at full capacity
 - Serves ~1700 users annually

• User support provided by Photon Sciences Division

- Beamline Science Programs
 - Instrument design and commissioning
 - Experimental planning, operations, and execution
 - Directly engages with users
- Data Science & Systems Integration (DSSI)
 - Controls systems, computing resources, and software
 - Supports beamline scientists and facility employees
- User support is a significant investment!
 - Scientific staff spent 80% of their time on user support

User facility scientific workflows present unique challenges

- Successful experiments require cooperation between multiple parties with distinct expertise
 - End user experimental lead, subject matter expert, and driver of scientific scope
 - Defines experimental scope. Provides samples for study. Customizes experimental procedure.
 - Works with beamline scientist to carry out experiment.
 - May not be an expert in beamline controls system, software development, nor high performance computing.
 - Beamline scientist beamline and/or instrument expert and lead on operation and execution of experiment
 - Commissions and validates beamline for experimental operations.
 - Works with the end user to adapt beamline and analysis operations for their experiment.
 - Works with the computational scientist to provide software support for common measurement and analysis procedures.
 - Has to juggle many different technical requests, requiring working knowledge of science, instruments, and software.
 - Computational scientist data acquisition and software expert designs tools for data storage and analysis
 - Develops and implements data acquisition and analysis software. Maintains computational resources for all parties.
 - Works with the beamline scientist to deploy software at beamline.
 - May work with end user to coordinate facility-wide access to computational resources.
 - May not be an expert in subject matter, but requires working knowledge of accelerator and/or beamline components.
- Our work seeks to support all three parties through improving the connectivity of software components

Analysis Pipelines are diverse and specialized

• Significant variations in dynamic range across similar beamlines, and even within a single beamline

- Existing workflows leverage custom libraries for online data processing and analysis
 - PyCHX (<u>https://github.com/NSLS-II/pyCHX</u>), PyXRF (<u>https://github.com/NSLS-II/PyXRF</u>), scikit-beam (<u>https://github.com/scikit-beam</u>)
 - No direct link to controls software (e.g. bluesky)
- Analysis pipelines should not compromise custom workflows

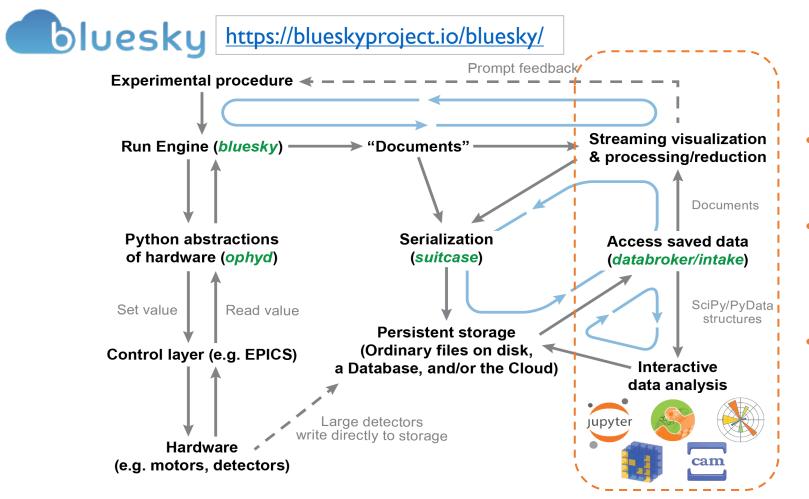
A radiasoft

Beamline agnostic analysis requires comprehensive environments

• Encapsulate analysis within a self-contained, modular environment via Jupyter Notebooks

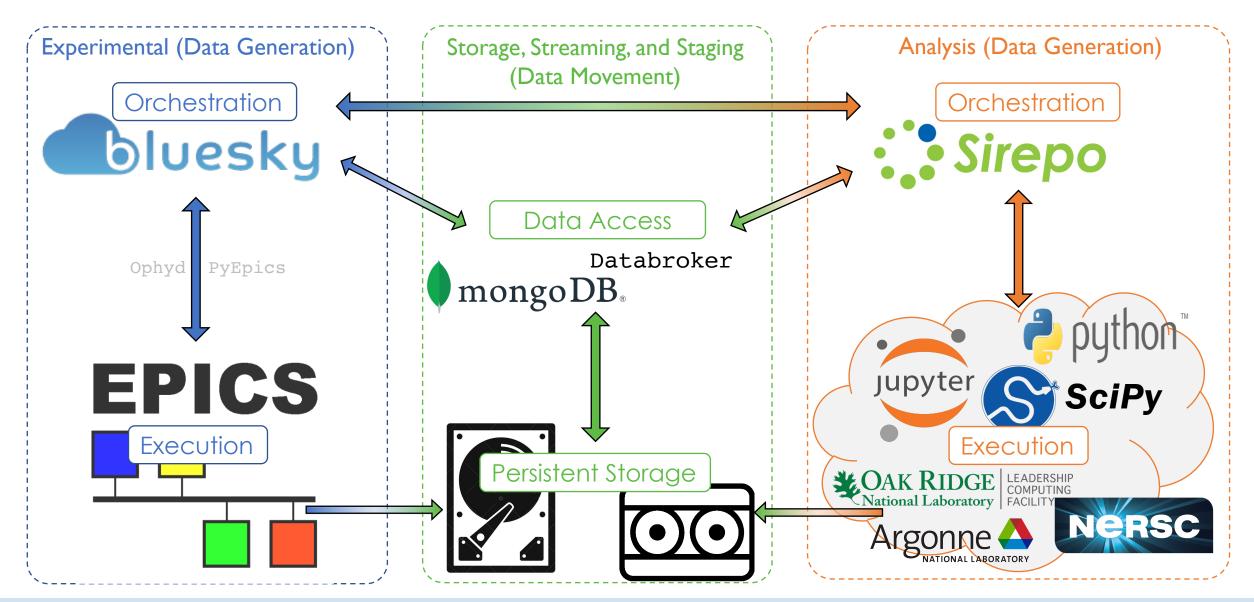
- Python environment supports varied analysis and visualization tools
 - Markdown enables rich text documentation, organization, and formatting
 - Backend supports inline rendering of datasets, images, and analyses
- Versioning and deployment can be supported via continuous integration
 - This workflow is commonly adopted for NSLS-II operation (https://github.com/NSLS-II/profile-collection-ci)
- Notebook can be modified and run manually, or templated and automatically executed (e.g. via Papermill)

Compress Data


• Automatically generate and export reduced datasets, figures, and reports

					Generate a compressed data with filename				
Data Browsing for Single-(Gi)-SAXS Run XPCS&XSVS Pipeline		Check seve	ral fra	ames average intensity		Replace old mask with a new mask with removed hot pixels Do average image			
This is the first of a three-part series of notebooks documenting a standard workflow for a data-processing and XPCS/XSVS analysis pipeline for the CHX beamline.	r a data-processing and XPCS/XSVS analysis pipeline for the CHX beamline.			n data analysis type		Do each image sum Find badframe_list for where image sum above bad_pixel_threshold			
Introduction	[61]:	<pre>print(roi_auto, qphi</pre>	_analysi	s, isotropic_Q_mask)		Check shutter open frame to get good time series			
"This notebook corresponds to version {{ version }} of the pipeline tool: https://github.com/NSLS-II/pipelines"		True False normal			[66]:	<pre>photon_occ = len(np.where(avg_img)[0]) / (imgsa[0].size)</pre>			
This notebook begins with a raw time-series of images and ends with $g_2(t)$ for a range of q , fit to an exponential or stretched exponential, and a two-time correlation function.						<pre>compress = photon_occ < .4 #if the photon ocupation < 0.5, do compress print ("The non-zeros photon occupation is %s."%(photon occ))</pre>			
Note: This version of the notebook has only been validated for saxs geometries, but the other scattering flags have been kept as options.	[62]:	roi_date = 'N.A'				<pre>print ("He hom-zeros photon occupation is as. a(photon_occ)) print("Will " + 'Always ' + ['NOT', 'DO'][compress] + " apply compress process.")</pre>			
Part I (XPCS_browse.ipynb) - this notebook						The non-zeros photon occupation is 0.047912584240105756. Will Always DO apply compress process.			
Setup: load packages/setup path Load Metadata & Image Data									
Part II (XPCS_preprocess.ipynb)				Create a PDF Report					
Apply Mask Clean Data: shutter open/bad frames Get Q-Map Get TD curve					s%s.pdf"%(uid,pdf_version,q_mask_name) _uid=%s%s%s.pdf"%(uid,pdf_version,q_mask_name)				
Define Q-RQI (qr, qz) Check beam damage						ame, _four_time, run_xsvs, run_dose, n_invariant_analysis,			
Part III (XPCS_analysis.ipynb)				md = md)					
One-time Correlation				uid=bdcce1f3_fra_0_400_g2_two_g2joint.png					
 Fitting Two-time Correlation The important scientific code is imported from the chxanalys and scikit-beam project. Refer to chxanalys and scikit-beam for additional documentation 	important scientific code is imported from the chanalys and scikit-beam project. Refer to chanalys and scikit-beam for additional documentation and citation information.				**************************************				

Control and Data Collection Workflows are Sophisticated

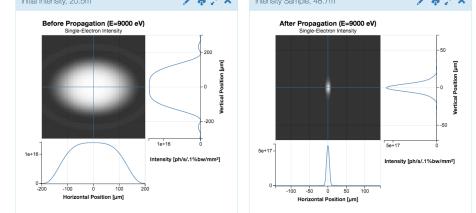

• Experimental procedures are well defined via descriptive schemas and equipment protocols

- Analysis procedures may be decoupled from this ecosystem
- Custom callbacks enable integration of specialized analysis tools and data management
- Coordinating the required tools, resources, and feedback systems remains a huge challenge!

• Integration of disparate pipelines will enhance performance and streamline user experience

Integrating Experiment and Analysis Workflows with Sirepo

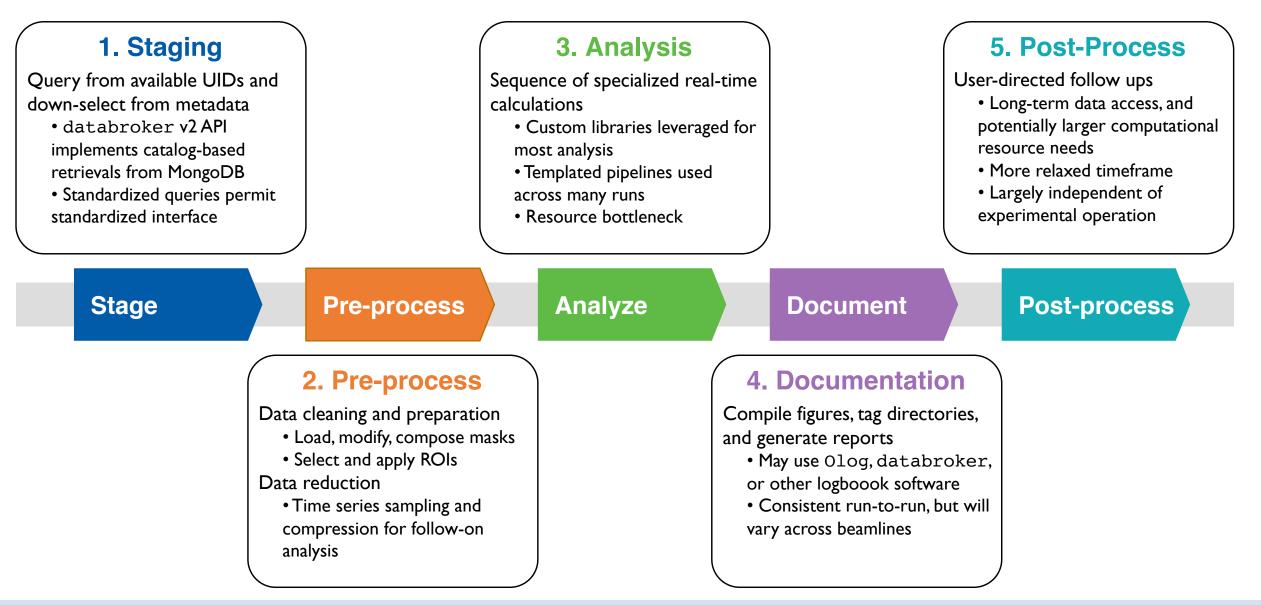
Aradiasoft


"An integrated platform for high performance data management and analysis at X-ray light sources"

Sirepo supports beamline simulations and Bluesky integration

- Sirepo is a cloud-based platform for supporting accelerator codes, analysis tools, and controls libraries
- Sirepo provides an interactive interface to the Synchrotron Radiation Workshop (SRW) code
 - Native support for several NSLS-II beamlines including CHX and CSX models
- Sirepo simulations have been coupled to Bluesky* plans in support of beamline studies
 - SRW has been demonstrated to reproduce relevant experimental scans at the CHX beamline[†]

Synchrotron Radiation Workshop	1	NSLS	HI CH)	beamline 🔗	4 S	ource	••• В	eamline	l	l Notes	\$	- 6) -	0
Electron Beam			^	Single-Ele	ectron S	spect	rum,	20.5n	n			ф	è	^
Existing Beam NSLS-II Low Beta Day 1 -				1	On-A	xis Sp	ectru	im fro Total		ament	Elec	tron I	Bean	n
Idealized Undulator			^	€ 1.5e+16 - EE /γ										
				1.5e+16 - pm/mm/kg 1.0e+16 - 5.0e+15 -						1				
Spectral Flux, 20.5m	1	Ф	*	4d) 4) 5.0e+15 -										
Intensity, 20m		Φ	•	- 0										
Brightness		¢	~		2	4	6	8 Photon	10 Energ	12 jy [keV]	14	16	18	2


⁺O. Chubar et al. "Simulation of experiments with partially coherent x-rays using Synchrotron Radiation Workshop". In: Proc.SPIE.Vol.10288. Aug. 2017

⁺L.Wiegart et al. "Towards the simulation of partially coherent x-ray scatteing experiments". AIP Conf. Proc. **2054**, 060079 (2019).

*M. S. Rakitin et al. "Introduction of the Sirepo-Bluesky interface and its application to the optimization problems". In: Proc.SPIE.Vol. 11493.Aug. 2020.

Characterizing a common analysis workflow

"An integrated platform for high performance data management and analysis at X-ray light sources"

A Prototype Sirepo Interface for Real-Time Analysis (I)

Selection of runs for inspection and analysis

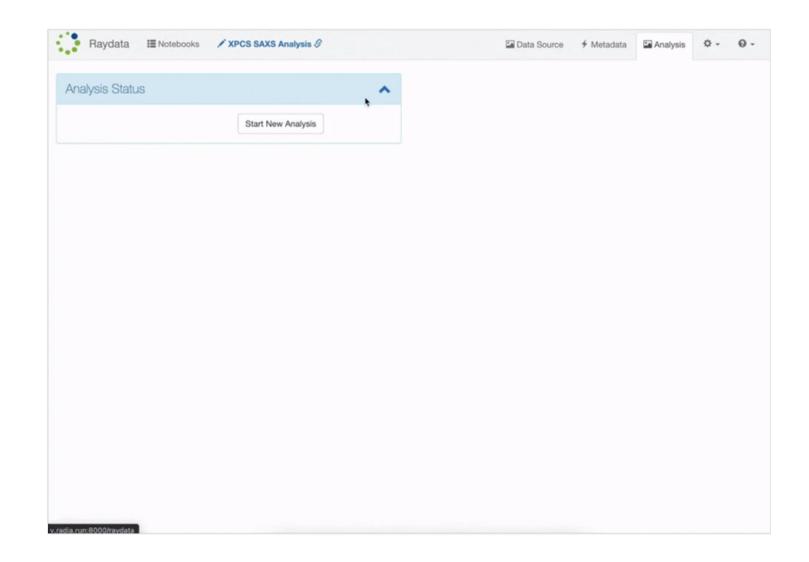
- Select from available runs at the beamline using databroker catalog infrastructures
- Searchable and sortable by UID, date/time, and other descriptive metadata

01/01/2021,	02·42 PM						Ö
	02:42 PM						
top 10/20/2021,	02:42 PM						
selected	suid	owner	start	stop	T_sample_	sequence_id	
✓	514e7104	xf11id	1613417538.0597684	1613417839.4322476	24.929	2406	
	a56dbf96	xf11id	1627506809.328043	1627506960.8223877		6588	
~	d5ec94d5	xf11id	1613781181.5599954	1613788683.0437691	43.85	2904	
	f46fa063	xf11id	1632781114.811771	1632781116.7563264	16.591	546	
nput Files			*				
	Mask ZIP	No File Sel	ected -				

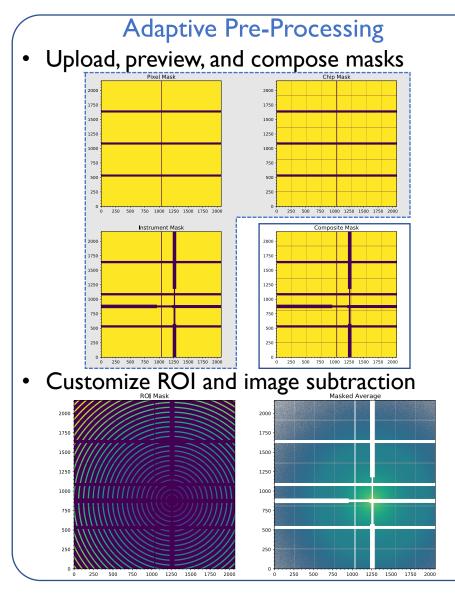
Inspection of metadata and analysis protocols

- Leverage catalog schemas to populate high level metadata for quickly browsing each run
- Preview relevant parameters prior to launching analysis

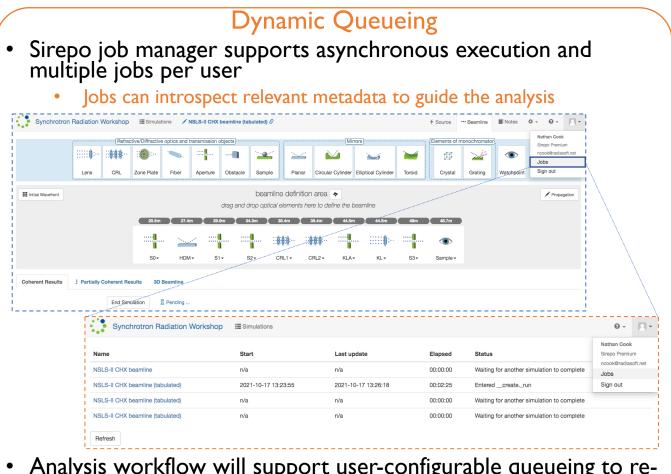
Rayda	ta 📰 Notebook	is XPCS	SAXS Analysis 🔗				Data Source	✤ Metadata	Analysis 🖬	\$ v	
Scans											
select	suid	owner	start		s	top		T_sample_	sequence	e_id	
	514e7104	xf11id	1613417538.0597684		1	613417839.4322476		24.929	2406		
	d5ec94d5	xf11id	1613781181.5599954		1	613788683.0437691		43.85	2904		
General				* *		Plan					*
Field	Value					Field	Value				
beamline id	CHX					plan args	{"detectors"	:["EigerSingleTrig	ger_AD37(pr	+	
cycle	2021_1					plan name	count				
data path	/nsls2/>	f11id1/data/20	021/02/19/			plan type	generator				
owner	xf11id					scan id	3				
time	161378	1181.5599954				sequence id	2904				
uid	d5ec94	d5-df43-41c9-	9e5b-f01be803222a								
						Analysis					•
						Field	Va	lue			
						analysis	pł	ni			
						auto pipeline	Y	PCS_SAXS_2021_	1 1/2		



A Prototype Sirepo Interface for Real-Time Analysis (II)


- Jupyter notebooks are deployed via pre-built Docker images
 - Easily reconfigurable for different dependencies and environments
- Active resource management
 - Run locally at the beamline, on a site cluster, or at NERSC
 - Queueing support in progress
 - Native first-in, first-out
 - Users can escalate priority
- Dynamic report generation

radiasoft


- Figures provided in real time
- Synthesized documents (PDF reports) produced as specified.

In-development mechanisms for real-time feedback

radiasoft

- Analysis workflow will support user-configurable queueing to reprioritize UIDs of interest
- Static or dynamic resource allocation
 - Local, on-site cluster, or NERSC execution modes are supported

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Extras

Bluesky is designed to address complete experimental workflows

- Library for experimental control and collection of scientific data and metadata
 - Bluesky experimental design and execution via "plan" schema
 - Ophyd hardware abstraction layer integrates beamline equipment via high level device protocols
 - Databroker I/O library permits access to data in myriad formats via customizable plugins
 - Suitcase serialization capabilities for storage and sharing across networks
- Worldwide community of users and developers
 - NSLS-II Development home. Deployment across all beamlines.
 - Advanced Photon Source (APS) Deployment and testing at X-Ray Science Division (XSD) beamlines
 - BESSY II Berlin, Germany Bluesky data acquisition and EPICS integration at some beamlines
 - Fritz-Haber-Institut Berlin, Germany Bluesky data acquisition and EPICS integration across institute
 - Pohang Light Source II Pohang, Korea Bluesky data acquisition for the past year
 - MAX IV Lund, Sweden Ophyd integration with Tango for experimental control
 - Additional ongoing efforts to integrate bluesky-queueserver (<u>https://github.com/bluesky/bluesky-queueserver</u>)
- An open source suite of tools
 - Designed to interface with detector tools and related software

https://blueskyproject.io/bluesky/

Individual beamlines present unique requirements on workflows

Coherent Hard X-Ray (CHX) Beamline

- I. Bluesky launches experimental plan
- 2. Experimental logging via Olog
- 3. Automated image pre-processing
 - I. No background subtraction

4. Jupyter notebook analysis environment

- I. Fixed template with high-level flags
- 2. Papermill automates analysis notebook execution pipeline
- 3. Decoupled from experimental procedure
- 4. Analysis includes: XPCS
- 5. Analysis saved to separate database
- 6. Re-tuning on the order of minutes
 - I. GBs of data produced every minute
 - 2. Analysis is $\sim 100x$ slower than experiment

Coherent Soft X-Ray (CSX) Beamline

- I. Bluesky launches experimental plan
- 2. Experimental logging via databroker
- 3. Manual image pre-processing
 - . Custom background subtraction
- 4. Jupyter notebook analysis environment
 - I. User customization is routine
 - 2. Notebook execution does not follow an automated pipeline
 - 3. Decoupled from experimental procedure
 - 4. Analysis includes: XPCS, CDI, pytchography, ...
- 5. Analysis saved to separate database
- 6. Re-tuning on the order of hours
 - GBs of data produced every minute
 - Analysis still ~10x slower than experiment

