Author: Carlin, E.G.
Paper Title Page
WEPV024 X-Ray Beamline Control with Machine Learning and an Online Model 695
 
  • B. Nash, D.T. Abell, D.L. Bruhwiler, E.G. Carlin, J.P. Edelen, M.V. Keilman, P. Moeller, R. Nagler, I.V. Pogorelov, S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
  • Y. Du, A. Giles, J. Lynch, J. Maldonado, M.S. Rakitin, A. Walter
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract DE-SC0020593.
We present recent developments on control of x-ray beamlines for synchrotron light sources. Effective models of the x-ray transport are updated based on diagnostics data, and take the form of simplified physics models as well as learned models from scanning over mirror and slit configurations. We are developing this approach to beamline control in collaboration with several beamlines at the NSLS-II. By connecting our online models to the Blue-Sky framework, we enable a convenient interface between the operating machine and the model that may be applied to beamlines at multiple facilities involved in this collaborative software development.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV024  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 17 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAL04 Machine Learning Based Tuning and Diagnostics for the ATR Line at BNL 803
 
  • J.P. Edelen, K. Bruhwiler, E.G. Carlin, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • K.A. Brown, V. Schoefer
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0019682.
Over the past several years machine learning has increased in popularity for accelerator applications. We have been exploring the use of machine learning as a diagnostic and tuning tool for transfer line from the AGS to RHIC at Brookhaven National Laboratory. In our work, inverse models are used to either provide feed-forward corrections for beam steering or as a diagnostic to illuminate quadrupole magnets that have excitation errors. In this talk we present results on using machine learning for beam steering optimization for a range of different operating energies. We also demonstrate the use of inverse models for optical error diagnostics. Our results are from studies that use combine simulation and measurement data.
 
slides icon Slides THAL04 [4.845 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THAL04  
About • Received ※ 10 October 2021       Revised ※ 22 October 2021       Accepted ※ 06 February 2022       Issue date ※ 01 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPV017
A cloud based toolbox for accelerator controls interfaces and optimization  
 
  • J.P. Edelen, E.G. Carlin, M.V. Keilman, P. Moeller, R. Nagler
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0019682
Modern particle accelerator facilities generate large amounts of data and face increasing demands on their operational performance. As the demand on accelerator operations increases so does the need for automated tuning algorithms and control to maximize uptime with reduced operator intervention. Existing tools are insufficient to meet the broad demands on controls, visualization, and analysis. We have developed a cloud based toolbox featuring a generic virtual accelerator control room for the development of automated tuning algorithms and the analysis of large complex datasets. This framework utilizes tracking codes combined with with algorithms for machine drift, low-level control systems, and other complications to create realistic models of accelerators. These models are directly interfaced with control toolboxes allowing for rapid prototyping of tuning algorithms. In this paper, we will provide an overview of our interface and demonstrate its utility for building beamline controls displays directly from accelerator simulation lattices. We will also demonstrate the use of our interface for testing online optimization and control algorithms.
 
poster icon Poster THPV017 [2.190 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRBR02 An Integrated Data Processing and Management Platform for X-Ray Light Source Operations* 1059
 
  • N.M. Cook, E.G. Carlin, P. Moeller, R. Nagler, B. Nash
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.M. Barbour, M.S. Rakitin, L. Wiegart
    BNL, Upton, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC00215553.
The design, execution, and analysis of light source experiments requires the use of increasingly complex simulation, controls and data management tools. Existing workflows require significant specialization to account for beamline-specific operations and pre-processing steps in order to collect and prepare data for more sophisticated analysis. Recent efforts to address these needs at the National Synchrotron Light Source II (NSLS-II) have resulted in the creation of the Bluesky data collection framework*, an open-source library providing for experimental control and scientific data collection via high level abstraction of experimental procedures, instrument readouts, and data analysis. We present a prototype data management interface that couples with Bluesky to support guided simulation, measurement, and rapid processing operations. Initial demonstrations illustrate application to coherent X-ray scattering beamlines at the NSLS-II. We then discuss extensions of this interface to permit analysis operations across distributed computing resources, including the use of the Sirepo scientific framework, as well as Jupyter notebooks running on remote computing clusters**.
* M.S. Rakitin et al., Proc. SPIE 11493, Advances in Computational Methods for X-Ray Optics V, p. 1149311, Aug 2020.
** M.S. Rakitin et al., Journal of Synchrotron Radiation, vol. 25, pp. 1877-1892, Nov 2018.
 
slides icon Slides FRBR02 [8.627 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-FRBR02  
About • Received ※ 21 October 2021       Revised ※ 27 October 2021       Accepted ※ 20 November 2021       Issue date ※ 24 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)