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Abstract
Over the past several years machine learning has increased

in popularity for accelerator applications. We have been ex-
ploring the use of machine learning as a diagnostic and
tuning tool for the transfer line from the AGS to RHIC at
Brookhaven National Laboratory. In our work, inverse mod-
els are used to either provide feed-forward corrections for
beam steering, or as a diagnostic to illuminate quadrupole
magnets that have excitation errors. In this paper we present
results on using machine learning for beam steering opti-
mization for a range of different operating energies. We also
demonstrate the use of inverse models for optical error diag-
nostics. Our results are from studies that use both simulation
and measurement data.

INTRODUCTION
Machine learning (ML) has seen a significant growth in

its adoption for widespread applications. In particle accel-
erators ML has been identified as having the potential for
significant impact on modeling, operation, and controls [1,2].
These techniques are attractive due to their ability to model
nonlinear behavior, interpolate on complicated surfaces, and
adapt to system changes over time. This has led to a num-
ber of dedicated efforts to apply ML, and early efforts have
shown promise.

For example, neural networks (NNs) have been used as
surrogates for traditional accelerator diagnostics to gener-
ate non-interceptive predictions of beam parameters [3, 4].
Neural networks have been used for a range of machine tun-
ing problems utilizing inverse models [5, 6]. When used in
conjunction with optimization algorithms neural networks
have demonstrated improved switching times between oper-
ational configurations [7]. Neural network surrogate models
have also been demonstrated to significantly speed up multi-
objective optimization of accelerators [8]. Additionally, ML
has been of interest for anomaly detection, using autoen-
coders, for root cause analysis [9], and for outlier detection,
using large data-sets of known good operational states [10].

In this work we seek to apply ML methods — for both
tuning and anomaly detection — on the AGS to RHIC trans-
fer line at Brookhaven National Laboratory. Specifically,
we employ the use of inverse models for these applications.
The application of inverse models for anomaly detection is
a burgeoning area of research in many other fields that has
not seen much attention in particle accelerators. Here we
present our work towards implementing inverse models to
detect errors in quadruples using only beam position moni-
tors and corrector data. We will demonstrate the utility of
∗ jedelen@radiasoft.net

this approach using a toy model, and then show how it scales
to a larger system such as the AGS to RHIC transfer line. We
will then show results of training inverse models using data
from the machine and discuss future work for this effort.

THE ATR LINE

The transfer line between the Alternating Gradient Syn-
chrotron (AGS) and RHIC, or the so-called the ATR line
[11, 12], must be retuned for different energies when RHIC
changes its operating point. The transfer line controls the
orbit matching, optics matching, and dispersion matching
of the beam into RHIC. The transfer line is broken down
into four sections. The U and W lines are seen by all beams
entering RHIC while the X and Y lines are used for injection
into the Blue and Yellow rings respectively. In this paper we
focus our studies on the UW subset of the ATR line. The
length of the transfer line presents challenges for tuning unto
itself. The problem is further complicated by a 1.7 m vertical
drop in order to get the beam from the AGS to RHIC.

The first part of the ATR (referred to as the U-line) starts
with fast extraction from the AGS and stops before the ver-
tical drop from the AGS to RHIC. The U-line consists of
two bends. The first bend is 4.25°, consisting of two A-type
dipole magnets. The second bend is an 8° bend consisting of
four C-type combined-function magnets (placed in a FDDF
arrangement), and thirteen quadrupoles. Optics in the U-line
are configured to accomplish several goals. The Twiss pa-
rameters at the AGS extraction point must be matched, and
provide achromatic transport of the beam to the exit of the
8° bend. The beam must be focused at the location of a thin
gold foil which is placed just upstream of the quadrupole
Q6 of the U-line. The Twiss parameters of the U-line must
be matched to the ones at the origin of the W-line. Finally,
the beam size should be kept small throughout to minimize
losses.

The second part of the ATR (referred to as the W-line)
introduces the vertical drop for injection into RHIC, and
the matching sections for the injection lines. It contains
eight C-type combined-function magnets that each make a
of 2.5° bend, followed by six quadrupoles. The eight com-
bined function magnets form a 20° achromatic horizontal
bend placed in a (F-D) configuration. The W-Line is also
responsible for lowering the beam elevation by 1.7 m. This
is accomplished using two dipoles in an achromatic dogleg
configuration. Along the line there are also a number of
BPMs and correctors that are required to match the orbit of
the beam into RHIC.
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FODO TEST PROBLEM
Before applying inverse models for anomaly detection on

the full UW line, we first demonstrate the efficacy of this
technique using a toy problem. Our toy problem is a FODO
lattice, containing BPMs and correctors, in addition to the
quadrupoles. We built a model that predicts the corrector
settings for a given sequence of BPM settings. Because
the quadrupoles supply a dipole kick when the beam does
not traverse them on axis, any error in the predicted cor-
rector setting should be strongly correlated to an error in
the quadrupole strength. Here we utilized a neural network
based inverse model training on simulation data collected
using MAD-X. A schematic of the beam-line used for this
study is shown in Fig. 1.

Figure 1: Screenshot of Sirepo visualization of toy lattice
used for studying inverse models for anomaly detection.
Quadrupoles are shown in red, correctors are black, and
BPMs are indicated by green flags.

The beam line is composed of four identical FODO se-
quences. Each segment has two BPM/corrector pairs fol-
lowed by a BPM after the second quadrupole. Having a
large number of BPMs available, ensured that the inverse
model was easy to train, which will allow us to use it to
detect errors in the quadrupoles.

The training data consisted of 5000 examples simulated
by randomly changing corrector strength and the initial beam
position. The NN architecture was optimized as a function
of the number of layers as well as the nodes per layer to
improve training loss without over-fitting. Gaussian noise
was used as a regularizer which leads to an increased noise
on the validation loss as the epoch increases. Figure 2 shows
the loss as a function of training epoch for the training and
validation data.

Here we see that The training loss is a bit above the vali-
dation loss which indicates we could train longer. However,
Fig. 3 shows the model prediction compared to the ground
truth for each of the correctors (kickers). The relationship is
almost perfectly linear in all cases, indicating the model is
well trained.

Next we test the model using data with systematically
introduced errors in individual quadrupoles. We ran the
MAD-X simulations with random corrector strengths and
initial beam positions. Then, the BPM outputs were used as
inputs to the NN model — trained without quadrupole errors
— to predict the corrector settings. These predicted corrector
settings were then compared to the actual corrector settings.

Figure 2: Mean squared error for the training and validation
data as a function of the training epoch.

Figure 3: Predicted output vs. ground truth for the initial
beam position and the kicker settings. The relationships are
almost perfectly linear in all cases.

Figure 4 shows the predicted corrector setting versus the
ground truth when testing the model using data generated
with a strength error in one of the quadrupoles. Here it is
very clear that the correctors in the first section of the beam-
line (kicker_11 and kicker_12) are not well reconstructed
while all the other correctors are well reconstructed. This
points to quadrupole strength errors in the first part of the
beam-line.

We then studied the prediction error for a wide range
of quadrupole errors and compared our ability to recon-
struct the corrector settings. Figure 5 shows the normalized
prediction error vs corrector index for data with different
quadrupole errors. For each test case we introduced a single
quadrupole error at different points along the beamline and
we observed prediction errors in both the horizontal and
vertical corrector settings.

Here we see that for a given quadupole there is a unique
error signature for the correctors. Additionally, the corrector
indices are arranged by their position in the beamline. As the
quadropoles that are varied move down the beamline so do
the errors in the corrector predictions. This is likely because
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Figure 4: Predicted output vs. ground truth for data with a
single quadrupole strength error.

Figure 5: Normalized prediction error of corrector strengths
given a range of Quadrupole errors. The dashed line is
the horizontal corrector and the dotted line is the vertical
corrector. The color indicates which Quadrupole was varied.

the BPM nearest the quadrupole with the error will be the
most sensitive to this perturbation. Additionally due to the
degenerate solutions in this type of model, it can be difficult
to differentiate upstream errors from downstream errors. If
we want to use this diagnostic for tuning, it is important
to also examine the error in the corrector prediction as a
function of the change in quadruple strength. Figure 6 shows
the normalized prediction error as a function of quadrupole
strength error for a single quadrupole.

There is a clear quadratic relationship between the
quadrupole strength error and the normalized prediction
error. This means that we can clearly detect anomalies in
quadrupoles using our inverse model trained on the BPMs
and correctors. Moreover, this means that we can vary the
quads to minimize the model error based on measured BPMs
and correctors, allowing us to tune the lattice without using
destructive beam optics measurements.

ATR INVERSE MODEL
Given the success of this effort on the toy model we next

applied this concept to the UW line in the ATR. The problem

Figure 6: Normalized prediction error as a function of
quadrupole strength error for each kicker (m−2). The solid
line is the horizontal kicker and the dashed line is the vertical
kicker.

is a bit more complex as there are now not just quadrupoles,
correctors, and BPMs, but also combined function bends
and vertical bends.That said there are still comparatively few
BPMs and correctors — only 26 and 14 respectively — mak-
ing the model of similar scale to the toy problem. However
there are 19 quadrupoles which significantly increases the
complexity.

We trained the inverse model using 5000 samples, ran-
domly varying the corrector strengths and beam initial posi-
tions. During our initial training of the inverse model four
correctors (utv4, uth6, utv7, and wth1) were not well fit.
This is likely due to the degenerate solutions that arise from
the length of the transfer line. We attempted a wide range of
solutions including sampling more data and working with
image representations of the data 1-D convolutional layers.
None of these methods were successful. When training in-
verse models there is always the possibility that the problem
will not be fully invertable. In future work we will address
this issue, however, for studies presented here we simply
removed those four correctors from the prediction. Figure 7
shows the training and validation loss for the inverse model
trained on the UW line.

Figure 7: Training and validation loss as a function of train-
ing epoch for the UW line.

Here we see very good agreement between the training and
validation set. Additionally the loss continues to decrease,
showing that we are not over-fitting. For this study the data
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Figure 8: Root mean squared error on the training (blue) and
validation (orange) datasets for the individual correctors.

were split into 80 % training and 20 % validation. Figure 8
shows the root mean squared error for each of the parameters
individually.

The prediction error on the training and validation datasets
are quite good. For this model we used 5 dense layers with
45 nodes each and Gaussian noise for regularization. The
model used rectified linear units for the activation functions.

INVERSE MODEL ERROR STUDIES
With a trained inverse model we moved on to the error

studies. Quadrupoles were individually varied over a range
of ±20 % of their design excitation. We then simulated the
UW line with random initial beam positions and random
corrector settings. The BPM output from these simulations
was used to predict the corrector settings using the model
trained on data with the design quadrupole strengths. These
simulations were run in two configurations, one where the
initial positions were also varied randomly and one where
the initial positions were not varied. The goal here was to
understand if the model can differentiate between these two
cases. During operations it is likely that the initial position
will be relatively static.

Figure 9 shows the predicted corrector settings vs the
ground truth for the validation set without quadrupole errors
(black), the test set with a single quadrupole error and ran-
dom initial position errors (red), and the test set with a single
quadrupole error without initial position errors (blue).

Here we can clearly see that some correctors have a signifi-
cant error in the prediction compared to others. For example
Utv2p2 has a nice linear relationship but with a clear jump
near zero. While UTH3, on the other hand, has a general
increase in the error, as compared with WTV6, where the
errors are relatively low. The model also shows a lack of
ability to distinguish between cases where the initial position
is varying and is not varying. The spread in the errors appear
consistent between the two data sets. Indeed, Figs. 10 and 11
— which show the sensitivity of each corrector prediction to
a particular quadrupole error — demonstrate that there is
negligible difference between the cases with and without ini-
tial position errors. Here sensitivity is defined as the model

Figure 9: Predicted corrector settings as a function of the
ground truth for, the three test cases. Without quadrupole
errors: black. A single quadrupole error and random initial
position errors: red. A single quadrupole error without
initial position errors: blue.

error divided by the fractional change in quadrupole strength.
These figures also show that there is a unique signature for
each quadrupole and that the model clearly identifies errors
in these magnets without any explicit knowledge of their
existence.

These results are promising for the adaption of this method
on the machine. Especially because the UW line is designed
to be linwar, we expect the methods developed in simulation
to behave similarly when transferred to the machine.

MACHINE STUDIES AND
BPM INVERSE MODELING

We are in the early stages of testing our method on the
machine, and have collected BPM and corrector data for the
nominal machine configuration. Working with the UW line
allows us to take data between injections to RHIC, parasitic
to operations. These studies took approximately four hours
of beam time without any interruption to operations.

Our main goals with this first study is to answer two key
questions 1) how much data do we need to train an inverse
model for the transfer line and 2) establish the feasibility of a
neural network based inverse model for detecting quadrupole
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Figure 10: Sensitivity of each corrector prediction to indi-
vidual quadruple errors. In this case the initial position was
randomly varied along with the correctors.

Figure 11: Sensitivity of each corrector prediction to indi-
vidual quadruple errors. In this case the initial position not
varied.

errors in the ATR line. With these data we can evaluate the
accuracy of the ATR line MAD-X model, study the ability
to transfer our NN inverse model from simulation data to
measured data, and finally test our ML models on real data
from the machine.

Figure 12 shows histograms of the beam position monitor
data collected on the ATR line. Note that our initial dataset
is relatively small, and has regions where there are quite a
few outliers. The outliers in the dataset make it difficult to
effectively sample the space for training neural networks.
This will present a challenge when training on machine data
alone. We plan to overcome this by combining the measured
data with simulation data prior to testing on the machine.

With this dataset we performed some initial studies in
order to understand the limitations of the measurements, and
to help identify areas for additional data collection, or where
simulations would be particularly useful. We are focused on
using inverse models that predict the corrector settings from
the BPM readings.

Figure 12: Histogram of BPM data collected from the ATR
line. Horizontal (x) and vertical measurements are shown
in blue and orange respectively.

For this study we varied numerous hyper parameters for
the model, including: the number of nodes per layer, the
number of layers, and the batch size. We also varied the
regularization parameters to include both L2 regularization
and Gaussian Noise. L2 regularization seeks to optimize
the neural network architecture while simultaneously elim-
inating weights that are very small. The result is a more
sparse network, but fewer nodes that are tracking noise in
the data. Gaussian noise can assist the optimizer in getting
out of local minima leading to a more robust solution. In the
end, we trained on a batch size of 5 and aggressive Gaussian
noise which helped the model fit such a small dataset. Fig-
ure 13 shows the training and validation loss as a function
of training epoch for our neural network.

Figure 13: Loss curve for training and validation sets for the
BPM data
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The training and validation loss both decrease quite
rapidly and then flatten out. The validation loss continues to
improve slightly but does not change significantly after about
40000 epochs. With small datasets it is important to train
for a long time in addition to restarting with different batch
sizes to introduce perturbations to the network that allow it
to generalize better. The large offset between the training
and validation loss indicates that the network would benefit
from more examples. The fact that the validation loss is not
increasing indicates that we are not overfitting though. In
spite of the relatively large discrepancy between the training
and validation loss, the performance on the validation set is
quite reasonable. Figure 14 shows the predicted corrector
setting compared to the ground truth for the validation set.

Figure 14: Fit results of the validation data for neural network
trained on bpm on our study data

The solid orange line is the linear fit between the ground
truth and the model output and the dashed line is the ideal
fit should the model accurately reconstruct the corrector
settings from the BPMs. In general the model performs
relatively well, however as noted earlier it is clearly biased
by small samples at extremes.

CONCLUSION
In this paper we explore the use of inverse models to detect

errors in quadrupole strengths using BPM and corrector
data. We have demonstrated an initial test using a toy model
consisting of four FODO cells. We then scaled this to the Uw
line on the ATR beamline at RHIC. Our results show that
inverse models can identify quadrupole errors by comparing
the predicted corrector setting to actual corrector settings.
We also show that the each quadruple strength error yields
a unique signature. We have begun transferring our work
for testing on the machine and have shown a neural network
inverse model can be trained on real BPM data from the UW
line.
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