Keyword: ISOL
Paper Title Other Keywords Page
TUMPA02 Development of a Machine Protection System for KOMAC Facility ion, linac, machine-protect, EPICS 334
 
  • Y.G. Song, Y.-S. Cho, H.S. Jeong, D.I. Kim, H.S. Kim, J.H. Kim, S.G. Kim, H.-J. Kwon, S.P. Yun
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work is supported by the Ministry of Science, ICT & Future Planning.
The Korea multi-purpose accelerator complex (KOMAC) has two beam extraction points at 20 and 100 MeV for proton beam utilization. High availability should be achieved through high system reliability and short maintenance times to prevent and mitigate damage. A machine protection system is essential for avoiding damage leading to long maintenance times. KOMAC MPS that was developed using analog circuit interlock box has its limit to cover increasing interlock signals and modify interlock logic. The disadvantage has been solved with digital-based system for more efficient logic modification and interlock extension. The MPS is configured remotely using the EPICS-based application. In this paper, we present KOMAC machine protection architecture and performance results of the new machine protection system.
 
slides icon Slides TUMPA02 [1.810 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUMPA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA030 Using AI in the Fault Management Predictive Model of the SKA TM Services: A Preliminary Study ion, software, monitoring, operation 435
 
  • M. Canzari, M. Di Carlo, M. Dolci
    INAF - OA Teramo, Teramo, Italy
  • R. Smareglia
    INAF-OAT, Trieste, Italy
 
  SKA (Square Kilometer Array) is a project aimed to build a very large radio-telescope, composed by thousands of antennae and related support systems. The overall orchestration is performed by the Telescope Manager (TM), a suite of software applications. In order to ensure the proper and uninterrupted operation of TM, a local monitoring and control system is developed, called TM Services. Fault Management (FM) is one of these services, and is composed by processes and infrastructure associated with detecting, diagnosing and fixing faults, and finally returning to normal operations. The aim of the study, introducing artificial intelligence algorithms during the detection phase, is to build a predictive model, based on the history and statistics of the system, in order to perform trend analysis and failure prediction. Based on monitoring data and health status detected by the software system monitor and on log files gathered by the ELK (Elasticsearch, Logstash, and Kibana) server, the predictive model ensures that the system is operating within its normal operating parameters and takes corrective actions in case of failure.  
poster icon Poster TUPHA030 [2.851 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA198 Software Applications for Beam Traceability and Machine Documentation at ISOLDE ion, target, controls, experiment 905
 
  • E. Fadakis, N. Bidault, M.L. Lozano Benito, E. Matli, J.A. Rodriguez, K.S. Seintaridis
    CERN, Geneva, Switzerland
 
  The ISOLDE facility at CERN requires a wide variety of software applications to ensure maximum productivity. It will be further enforced by two new and innovative applications; Automatic Save After set uP (ASAP) and Fast Beam Investigation (FBI). ASAP saves crucial time for the engineers in charge (EIC) during the physics campaign. It automatizes and standardizes a repetitive process. In addition, for each new set up, the EIC is required to document the settings of all important elements before delivering beam to the users. FBI will be serving two different needs. First, it will be used as a beam traceability tool. The settings of every element of ISOLDE that could obstruct, stop or affect the beam will be tracked by the application. This will allow to understand better the presence of radioactive contaminants after each experiment at every possible point in the facility. The second functionality will allow real time monitoring of the machine status during a physics run. FBI will be the most efficient way to visualize the status of the machine and find the reason that prevents the beam from arriving to the experimental station.  
poster icon Poster TUPHA198 [0.460 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA198  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA199 Software Applications Used at the REX/HIE-ISOLDE Linac ion, detector, cavity, extraction 910
 
  • E. Fadakis, N. Bidault, E.O. Gonzalez, M.L. Lozano Benito, E. Matli, J.A. Rodriguez, S. Sadovich, E. Siesling
    CERN, Geneva, Switzerland
 
  The HIE-ISOLDE Linac (High Intensity and Energy) is a recent upgrade to the ISOLDE facility of CERN, increasing the maximum beam energy and providing means to explore more scientific opportunities. The main software tools required to set up the new superconducting post-accelerator and to characterise the beam provided to the experimental stations will be presented in this paper. Emphasis will be given to the suite of applications to control all beam instrumentation equipment which are more complex compared to the ones in the low energy part of ISOLDE. A variety of devices are used (Faraday cups, collimators, scanning slits, striping foils and silicon detectors). Each serves its own purpose and provides different information concerning the beam characteristics. Every group of devices required a specific approach to be programmed.  
poster icon Poster TUPHA199 [0.940 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA199  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA209 MEDICIS High Level Control Application ion, interface, controls, hardware 953
 
  • C. Charrondière, K. Develle, T. Stora
    CERN, Geneva, Switzerland
 
  CERN MEDICIS is a research facility that will make radioisotopes for medical applications using the primary proton beam at ISOLDE. It will start operating later in 2017. The high level application for the new beam line is responsible for the control of various equipment, such as power supplies, Faraday cups and scanners, as well as the monitoring of environmental parameters such as the vacuum level. It is characterized by a single user friendly interface to facilitate the operators tasks. In this paper we provide arguments for the chosen solution and give the latest update on the status of the project.  
poster icon Poster TUPHA209 [3.264 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA209  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA090 Channel Selection Switch for the Redundant 1.3 GHz Master Oscillator of the European XFEL ion, FEL, controls, detector 1590
 
  • B. Gąsowski, K. Czuba, L.Z. Zembala
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • H. Schlarb
    DESY, Hamburg, Germany
 
  Funding: Research supported by Polish Ministry of Science and Higher Education, founds for international co-financed projects for years 2016 and 2017.
The phase reference signal reliability is of utmost importance for continuous operation of the European XFEL machine. Since even very short interruption or glitch in the reference signal might break the precise synchronisation between subsystems, it is desirable to minimize probability of such events. While master oscillators often have a hot-spare to speed-up recovery after a failure, whether switched manually or electronically, it does not save from time-consuming resynchronisation. Our experience from testing and commissioning E-XFEL 1.3 GHz Master Oscillator (MO) shows that a struggle to achieve demanding phase-noise requirements might negatively impact reliability of the system. In this paper we present an approach which allows for quick switching between independent reference generation channels while maintaining continuity of the output signal. This is a first step towards autonomous redundancy solution for the E-XFEL MO which will maintain continuous reference signal even in case of a failure of one of the generation channels.
 
poster icon Poster THPHA090 [1.155 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA100 Integration of Personal Protective Equipment Checks in Access Control ion, controls, interface, operation 1613
 
  • P. Pok, F. Havart, T. Ladzinski
    CERN, Geneva, Switzerland
 
  Access to the interlocked zones of the CERN accelerator complex is allowed only for personnel wearing standard personal protective equipment. This equipment is complemented by specialised personal protective devices in case of specific hazards related to the remnant radiation or the presence of cryogenic fluids. These complex devices monitor the environment in the vicinity of the user and warn the user of the presence of hazards such as radiation or oxygen deficiency. The use of the devices is obligatory, but currently only enforced by procedures. In order to improve the safety of the personnel it has been proposed to verify that users are carrying their devices switched on when entering. This paper describes the development of a specialised multi-protocol terminal, based on Texas Instruments digital signal processor and integrated in the personnel protection system. The device performs local checks of the presence and status of operational dosimeter prior to allowing access to the interlocked zones. The results of the first tests in the Proton Synchrotron accelerator complex will be presented.  
poster icon Poster THPHA100 [1.914 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)