Author: Rowland, J.
Paper Title Page
MOPKN006 Algorithms and Data Structures for the EPICS Channel Archiver 94
  • J. Rowland, M.T. Heron, M.A. Leech, S.J. Singleton, K. Vijayan
    Diamond, Oxfordshire, United Kingdom
  Diamond Light Source records 3GB of process data per day and has a 15TB archive on line with the EPICS Channel Archiver. This paper describes recent modifications to the software to improve performance and usability. The file-size limit on the R-Tree index has been removed, allowing all archived data to be searchable from one index. A decimation system works directly on compressed archives from a backup server and produces multi-rate reduced data with minimum and maximum values to support time efficient summary reporting and range queries. The XMLRPC interface has been extended to provide binary data transfer to clients needing large amounts of raw data.  
poster icon Poster MOPKN006 [0.133 MB]  
MOPKS001 Diamond Light Source Booster Fast Orbit Feedback System 160
  • S. Gayadeen, S. Duncan
    University of Oxford, Oxford, United Kingdom
  • C. Christou, M.T. Heron, J. Rowland
    Diamond, Oxfordshire, United Kingdom
  The Fast Orbit Feedback system that has been installed on the Diamond Light Source Storage ring has been replicated on the Booster synchrotron in order to provide a test bed for the development of the Storage Ring controller design. To realise this the Booster is operated in DC mode. The electron beam is regulated in two planes using the Fast Orbit Feedback system, which takes the beam position from 22 beam position monitors for each plane, and calculates offsets to 44 corrector power supplies at a sample rate of 10~kHz. This paper describes the design and realization of the controller for the Booster Fast Orbit Feedback, presents results from the implementation and considers future development.  
poster icon Poster MOPKS001 [0.597 MB]  
WEMAU004 Integrating EtherCAT Based IO into EPICS at Diamond 662
  • R. Mercado, I.J. Gillingham, J. Rowland, K.G. Wilkinson
    Diamond, Oxfordshire, United Kingdom
  Diamond Light Source is actively investigating the use of EtherCAT-based Remote I/O modules for the next phase of photon beamline construction. Ethernet-based I/O in general is attractive, because of reduced equipment footprint, flexible configuration and reduced cabling. EtherCAT offers, in addition, the possibility of using inexpensive Ethernet hardware, off-the-shelf components with a throughput comparable to current VME based solutions. This paper presents the work to integrate EtherCAT-based I/O to the EPICS control system, listing platform decisions, requirement considerations and software design, and discussing the use of real-time pre-emptive Linux extensions to support high-rate devices that require deterministic sampling.  
slides icon Slides WEMAU004 [0.057 MB]  
poster icon Poster WEMAU004 [0.925 MB]  
FRBHMULT06 EPICS V4 Expands Support to Physics Application, Data Acsuisition, and Data Analysis 1338
  • L.R. Dalesio, G. Carcassi, M.A. Davidsaver, M.R. Kraimer, R. Lange, N. Malitsky, G. Shen
    BNL, Upton, Long Island, New York, USA
  • T. Korhonen
    Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
  • J. Rowland
    Diamond, Oxfordshire, United Kingdom
  • M. Sekoranja
    Cosylab, Ljubljana, Slovenia
  • G.R. White
    SLAC, Menlo Park, California, USA
  Funding: Work supported under auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC, and in part by the DOE Contract DE-AC02-76SF00515
EPICS version 4 extends the functionality of version 3 by providing the ability to define, transport, and introspect composite data types. Version 3 provided a set of process variables and a data protocol that adequately defined scalar data along with an atomic set of attributes. While remaining backward compatible, Version 4 is able to easily expand this set with a data protocol capable of exchanging complex data types and parameterized data requests. Additionally, a group of engineers defined reference types for some applications in this environment. The goal of this work is to define a narrow interface with the minimal set of data types needed to support a distributed architecture for physics applications, data acquisition, and data analysis.
slides icon Slides FRBHMULT06 [0.188 MB]