MOPKNO006

Proceedings of ICALEPCS2011, Grenoble, France

ALGORITHMS AND DATA STRUCTURES FOR THE EPICS CHANNEL
ARCHIVER

J. Rowland, M.T. Heron, S.J. Singleton, K. Vijayan, M. Leech,
Diamond Light Source, Oxfordshire, UK

Abstract

Diamond Light Source records 3GB of process data
per day and has a 15TB archive on line using the
EPICS Channel Archiver. This paper describes recent
modifications to the software to improve performance and
usability. The file-size limit on the R-Tree index has
been removed, allowing all archived data to be searchable
from one index. A decimation system works directly on
compressed archives from a backup server and produces
multi-rate reduced data with minimum and maximum
values to support time efficient summary reporting and
range queries. The XMLRPC interface has been extended
to provide binary data transfer to clients needing large
amounts of raw data.

INTRODUCTION

This paper investigates the architecture of the EPICS
Channel Archiver and describes the changes made to
improve performance and usability at Diamond. Other
database designs were also considered as part of the
upgrade progress and for intermediate processing of dec-
imated data, and this information is summarized as a
reference for future archiver developments. Information
about the data structures used in external storage is not
always available in user documentation, but it is essential
to consider these together with hardware capabilities and
query patterns when good performance is required.

Problem Statement

The EPICS Channel Archiver (Archiver) records data
from N channels, each producing samples at a different
rate. We assume that timestamps are monotonic, and that
samples arrive sorted in time but unsorted by channel.
The goal of the Archiver is to manage this data and fulfil
queries in a timely manner to support operations. The most
common query returns samples from M << N channels
between times TO and T1, so query results exhibit the
opposite locality of reference to sample insertion. If the
most common query returned samples from all channels
in a small time range then there would be no mismatch
between insertion and retrieval and the problem would be
trivially solved; for example a sequential logfile of samples
with a sparse index of timestamps would suffice.

Locality of reference is important because it determines
how to find the next sample in a query; sequential samples
can be iterated without traversing an intermediate data
structure. The problem is compounded when the storage

9

medium penalises random access. This is the case for all
common systems, as RAM, solid-state disks and hard disks
transfer data in blocks. Hard disks have the extra problem
of mechanical latency when positioning the head.

Channel Archiver at Diamond

The important figures for Diamond are presented in
Table 1. The Archiver is split across multiple engines
for functional isolation and to utilize multiple processor
cores. Diamond also operates a redundant system with
two complete Archiver servers and disks to ensure high
availability, so every component in the table is duplicated.

Table 1: Archiver Parameters

Data Size 12.5TB
Data Rate 3 GB/day
Index Size 23 GB
Archive Engines 39
EPICS Channels 148819
Server RAM 24 GB
Server CPU 2x Intel X5670
Server Cores 24 (HT)
RAID Storage 36 TB
RAID Cache 1GB (write-back)
RAID groups 5
DATA STRUCTURES
Chunked Arrays

An array contains a single type of element, and supports
appends and random reads. An array is contiguous in
storage so that element addresses can be calculated directly,
but resizing involves allocating new storage and copying
the whole array. Maintaining contiguity whilst allowing
for growth is possible using the ‘dynamic array’ where the
array is resized by a constant multiplicative factor rather
than one element at a time. This gives amortized O(1)
append complexity, and is commonly used for in-memory
arrays such as the C++ std::Vector. Drawbacks are memory
fragmentation, unpredictable delays due to copying, and
the need for increasing amounts of space at the end of the
array.

An alternative is the chunked array, where the array is
not copied on resize and is no longer fully contiguous.
Storage is allocated in chunks; now element addresses
must be mapped to chunk locations using an index. This

Data and information management

Proceedings of ICALEPCS2011, Grenoble, France

is the storage mechanism used by the Archiver and other
scientific data stores. The Archiver also chains chunks
together in a linked list so that the index is only touched to
find the initial chunk of a query. One common file format
supporting chunked arrays is HDFS5, used for beamline
experimental data at Diamond [1].

The Archiver has a minimum chunk size of 64 samples.
As new chunks are added to an array the chunk size is
doubled up to a maximum of 8192 samples. This reduces
wasted space for small arrays and at the end of chunks
whilst ensuring that large arrays have reasonable runs of
contiguous storage.

The Archiver also partitions array storage by date, into
weekly data directories. Once written, partitions are
immutable, making backups simple as old directories do
not have to be scanned for updates.

R-Tree

The Archiver uses an R-Tree as the chunk index. An
R-Tree is a sorted search tree optimized for efficient range
intersection queries. Each tree node has M children; having
large nodes reduces the depth of the tree and the number
of seeks required to complete a search compared with a
binary tree. At Diamond the default M value of 50 has been
increased to 200 to reduce the depth of the Master Index.

The keys in the tree are timestamps and the values are
chunk offsets. As the archiver does not allow overlapping
chunks to be stored in an array, the index structure could be
replaced with a B-Tree without loss of functionality. This is
relevant as there are many robust B-Tree implementations
available offering useful upgrades such as compression and
file locking [2].

Hash Table

The Archiver contains many channels, so the first
level of index is a chained hash table with linked lists
mapping from channel names to chunk indices. The default
table size of 1009 entries resulted in 150x overfilling for
Diamond channels, and the linked list nodes are spread
throughout the index file, making lookups expensive.
An option was added to the ArchivelndexTool to adjust
the hash table size and the Master Index was rebuilt
using a prime near 300000, improving channel retrieval
performance.

Master Index

The Hash Table and R-Trees for an archiver partition
are stored in an index file in the partition directory. The
partitions are joined by merging the individual index files
into the Master Index. The data type used to store file
offsets was increased from 32 to 64 bits to allow the size
of the Master Index to grow above 2GB. This increases
usability by presenting the user with a single index for
all data; previously the user was responsible for splitting
queries across multiple indices. Also, the interpolation

Data and information management

MOPKNO006

algorithms in the server only produce consistent bin
boundaries when retrieval is from the same index.

HARDWARE

Diamond uses a magnetic disk system in a RAIDS
configuration to store Archiver files. The Archiver services
all queries from the on-disk arrays, so samples must be
written soon after they are received to support timely
control room diagnostics. Samples are stored in circular
buffers in RAM, and written every 30s. This write
operation appends samples to every chunk that has been
updated in the last period, and chunks are scatted across the
disks. This is illustrated in Fig. 1; numbers in the matrix
are disk offsets; shading indicates write order. The write
pattern is not contiguous.

1 2 3 4 5
2 7 8 9 10
T
(=1
s 3 12 13 14 15
=
@)

4 17 18 19 20

S5t 21 22 23 24 25

1 2 3 4 5
Timestamp

Figure 1: Archiver Write Order.

A typical magnetic disk can perform 100 I/O operations
per second (IOPS) and has a sustained sequential transfer
speed of 100MB/s. A disk seek costs as much as
transferring 1MB of data. Each channel update costs one
IOP. Therefore we can service approximately 3000 channel
updates every 30s, assuming that none of the array chunks
are sufficiently close together on the disk for their writes
to be merged into a single IOP. This demonstrates that the
key to Archiver performance is servicing write requests.
RAIDS configurations typically have reduced random write
performance due to the need to update parity bits, but
spreading the archiver partitions across multiple RAID
groups increases random write performance linearly with
the number of RAID groups.

Write-Back Cache Controller

The RAID controller in the Diamond Archiver server
has a battery-backed write-back cache with 1GB of RAM,
enough to store 8 hours of data. Increasing the write
period allows small writes to be merged, greatly increasing
throughput. Figure2 shows the write pattern after re-ordering
by the cache controller.

95

MOPKNO006

11 12 13 14 15

Channel
(98]

41 16 17 18 19 20

5t 21 22 23 24 25

1 2 3 4 5
Timestamp

Figure 2: RAID Cache Write Order.

Table 2 shows the I/O utilization reported by the Linux
tool IOSTAT when running the full Diamond archiving
workload on three systems with different RAID controllers.
100% write utilization indicates that samples are discarded.
Old is the previous production archiver, New is the current
production archiver with upgraded cache controller, Desk-
top is a machine without a write-back cache controller.

Table 2: 1/0 Utilization

Hardware Write% Read%
New 3 75
Old 40 100
Desktop 100 100
RETRIEVAL

The Archiver query interface is exposed through the
XMLRPC language-independent remote procedure call.
This has proved pleasant to use from a variety of platforms
including VB.NET, Matlab, Python and Java. However
some users retrieve a large number of raw samples from
the Archiver to produce multi-year reports and found
the performance disappointing even after the server and
disk upgrade. The XML encoding of arrays of EPICS
datatypes was the limiting factor, these were packed as
arrays of structures with the field names in ASCII for
each sample, leading to a large space and time overhead.
A new XMLRPC retrieval type was developed returning
the EPICS sample array as a structure of arrays, one for
seconds, nanoseconds, value, status and severity, each array
packed into a byte buffer in native little-endian format
and base64 encoded. Table 3 shows the performance
improvement, the NFS method shows the performance of
direct file access. The number of samples per request was
still limited to 10000 as the RPC result is assembled in
memory before sending to the client, this has since been
increased to 1M samples to reduce the overhead of the RPC
roundtrip.

96

Proceedings of ICALEPCS2011, Grenoble, France

Table 3: Retrieval Method Peformance

Method Overhead Time
NES 1x 10m20s
XMLRPC 20x 112m7s
XMLRPC Base64 1.3x 26m
COMPRESSION

At Diamond backups are compressed with tar and gzip,
and typically achieve a 4:1 compression ratio. Some of this
is accounted for by partially empty chunks at the end of
each array partition, but the low entropy of sorted EPICS
time series data makes it an ideal candidate for compres-
sion. Figure 3 shows the sparsity pattern of the difference
between adjacent samples for real double-precision data.
High-order bytes of the timestamp corresponding to days
and months, status and severity words, and padding bytes
put in to enforce aligned memory access all rarely change.

Figure 3: Differences of Adjacent Samples.

Compressed tar files are not seekable and cannot be read
by the Archiver tools directly but libarchive [3] can stream
decompressed data from a tar file without extracting to a
temporary directory, this is used at Diamond to perform
complete scans of the archive. Every sample can be read
in a few days directly from compressed backups. This was
used to feed the decimation tools discussed below.

Another option for direct access to compressed data is
the squashfs [4] file system. This uses gzip in blocks to
create a seekable compressed file system image that can
be mounted by Linux. Using this to compress older data
files will effectively quadruple the capacity of the Archiver
storage without any software development effort. Squashfs
is part of the Linux kernel from version 2.6.29.

Data and information management

Proceedings of ICALEPCS2011, Grenoble, France

DECIMATION

Many queries request decimated data from the archiver,
and this decimation is performed on-line, traversing every
raw sample on disk in the time range. As part of the up-
grade program a method of pre-calculating these decimated
queries was investigated. The required performance was
achieved without making use of pre-decimated data, but the
method is described because the data structures are more
generally useful and offer an alternative to the chunked
array store.

The data structures for decimated data were based
on Hypertable [5], a write-optimized sorted key value
storage engine developed to run on commodity hardware.
Hypertable has previously been considered as a storage
engine for the Archiver by INFN [6], and is itself inspired
by the Google Bigtable [7] database.

Hypertable

Hypertable eliminates random writes through the use of
a RAM cache. The key components of Hypertable are as
follows:

e Sequential logfile for durability,

e RAM cache for data re-ordering (MEMTABLE),

e Periodic writes to immutable sorted disk tables
(SSTABLE),

e Periodic external mergesort,

e Index of tables.

All operations are appended to a logfile which is period-
ically flushed to disk. In case of system failure, pending
operations can be replayed from the logfile. Key and value
pairs are maintained in a sorted data structure in RAM
known as the MEMTABLE, and written to immutable
sorted lists known as SSTABLES (sorted string tables) once
the RAM table is full. This provides similar functionality to
the write-back RAID controller, but in software only. Keys
are located in SSTABLESs by a B-Tree index.

In summary Hypertable provides a write-optimized
structure to maintain partially sorted data on disk with the
degree of sorting limited by available RAM. To improve
sorting, SSTABLEs are periodically merge-sorted together.
Typically the maximum size of the SSTABLE must be
limited to prevent full-disk sorts. For EPICS time series
data a suitable sort key is the (channel, timestamp) pair.
This will ensure that channel samples are stored with good
locality on disk for retrieval.

The decimation system uses a simple implementation of
the Hypertable scheme. The sort key is (decimation rate,
channel name, binned timestamp). The MEMTABLE uses
the Berkeley B-Tree in-memory database. Raw Archiver
samples are read from the compressed backups. If the
MEMTABLE contains a binned sample containing the
timestamp, the sample is added to the bin, otherwise a new
bin is created. Once the MEMTABLE is full, it is saved
to disk as a list of key value pairs. Once all samples have

Data and information management

MOPKNO006

been read, the SSTABLEs are merge sorted into a single
large table, and a sparse index is created containing the
file offsets of each channel. The final table and index are
compressed with squashfs.

Decimating all channels at 10 minute, 1 hour and 1
day intervals results in a compressed data size of 62 GB.
An XMLRPC server provides the same interface as the
original Archiver. Retrieval performance for long deci-
mated queries is improved in proportion to the decimation
interval.

SUMMARY

The required performance and usability improvements
to the EPICS Archiver at Diamond were achieved without
major changes to the software, but it was essential to
consider hardware and software together to achieve this.
Table 4 shows some benchmarks of the old and new
systems. The DI benchmark returns decimated data for
a week from a few hundred channels, the VA benchmark
returns raw data for years from a few 10s of channels.

Table 4: Benchmarks

Hardware Test Time
New DI 30s
Old DI 3m30s
New VA 8m30s
Old VA 110m30s

For future Archiver developments the Hypertable com-
bination of logfile and in-memory queryable cache offer
a way of implementing an efficient and durable storage
engine without requiring a hardware RAID controller.

REFERENCES

[1] HDFS5, http://wuw.hdfgroup.org/HDF5

[2] Berkeley Database, http://www.oracle.com/us/
products/database/berkeley-db

[3] http://code.google.com/p/libarchive
[4] http://squashfs.sourceforge.net
[5] http://hypertable.org

[6] Mauro Giacchini, Hypertable Archiver, http://www.1lnl.
infn.it/~epics/joomla/archiver.html

[7] http://labs.google.com/papers/bigtable.html

97

