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Abstract 
Diamond Light Source is actively investigating the use 

of EtherCAT-based remote I/O modules for the next phase 
of photon beamline construction. Ethernet-based I/O in 
general is attractive, because of reduced equipment 
footprint, flexible configuration and reduced cabling. 
EtherCAT offers, in addition, the possibility of using 
inexpensive Ethernet hardware, off-the-shelf components 
with a throughput comparable to that of current VME-
based solutions. This paper presents the work to integrate 
EtherCAT-based I/O to the EPICS control system, listing 
platform decisions, requirements considerations and 
software design, and discussing the use of real time pre-
emptive Linux extensions to support high-rate devices 
that require deterministic sampling. 

 

INTRODUCTION 
Diamond Light Source is a third-generation 

synchrotron light source which started operations in 2007. 
The current operational state includes twenty photon 
beamlines, with a further twelve beamlines due to be 
completed by 2017. Of these, three are in advanced stages 
of design and construction. 

Diamond’s control system is based on the EPICS 
control system toolkit[1][2]. In the current control system, 
generic I/O is interfaced through a range of VME 
hardware. This architecture is being reconsidered in the 
context of the next phase of beamline construction [3]. In 
the new architecture most I/O functionality, including 
motion control, video and I/O for analogue and digital 
signals, will be realised through Ethernet-attached I/O.  

Ethernet-based I/O allows the replacement of VME 
crates by 1U x86 PC as the EPICS input output controller 
(IOC) servers. This saves rack space and uses easily 
replaceable standard computing server hardware, 
available from many manufacturers; configuration is 
made more flexible because signals do not need to be 
concentrated in a single crate. The use of Cat6 cabling is 
an additional advantage.  

ETHERCAT 
EtherCAT[4][5] is a real-time Ethernet protocol that 

relies on conventional Ethernet frames with very short 
cycle times and efficient bandwidth utilisation. The 
protocol uses the full duplex mode of Ethernet; each 
communication direction is operated independently of the 
other.  

EtherCAT operates with a master that passes EtherCAT 
telegrams to a series of EtherCAT slaves. The EtherCAT 
master uses standard Ethernet controller hardware, whilst 
the slaves use a custom slave controller. The slaves 

process the incoming telegrams directly; they extract or 
insert user data and transfer the telegrams to slaves 
downstream, each slave introducing a delay of a few 
nanoseconds. The last EtherCAT slave automatically 
returns the processed telegram back to the master as a 
response telegram. 

Each EtherCAT slave includes a controller with a 
Fieldbus Memory Management Unit (FMMU), which 
allows the mapping of logical addresses in the telegram to 
physical ones within the slave. The FMMU converts 
logical addresses to physical ones via an internal table, 
configured at slave initialisation. It is able to address 
physical locations down to the level of individual bits and 
is configured at start-up. 

The telegram structure, combined with the FMMU 
capabilities, allows several slaves to be addressed in a 
single Ethernet frame. This characteristic significantly 
reduces the overhead in comparison to other Ethernet 
fieldbus protocols and is well suited to addressing devices 
that may have a payload of only a few bytes, such as 
digital I/O devices, typical of industrial automation. 

The registers in each slave that can be mapped by the 
FMMUs are known as Process Data Objects (PDOs). 
After configuration the primary EtherCAT telegram 
present on the bus is Logical Memory Read and Write 
(LRW). This exchanges PDO data bi-directionally 
between the master and multiple slaves. 

EPICS SOFTWARE COMPONENTS 
Diamond EPICS soft IOCs typically run on x86 Linux 

servers. Prior to interfacing EtherCAT, there had not been 
a requirement for deterministic sampling on this platform, 
as operations that relied on more precise timing were 
delegated to dedicated VME hardware. x86 servers  
therefore typically ran a standard RedHat Linux kernel. 
To enable the deterministic performance of EtherCAT, a 
Real Time Linux kernel was required for servers running 
the EtherCAT master. The details are described in the next 
section. 

A further requirement that was considered was the need 
to segregate functionality into separate IOCs that could be 
maintained separately, for example for separate technical 
areas.  To realise this, multiple EPICS IOC instances 
needed to have access to every EtherCAT bus scanner. 
The resulting architecture is shown in Figure 1. 

In the physical realisation, a server has a minimum of 
two Ethernet interfaces, one for standard TCP/IP traffic 
and an EtherCAT-dedicated interface. There is a single 
master for every EtherCAT-dedicated interface. The 
current deployments have one such interface per server, 
but more could be used if the application requires further 
segregation of components within the same EPICS IOC 
server.  
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Figure 1: Software components. Cyan repres
from Etherlab, whilst yellow represents elem
Diamond. 
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from each client are added to the Scanner command 
queue in blocking mode, and merged into the local copy 
of PDO memory ready for the next bus cycle. The Bus 
Scanner also distributes the FMMU assignments to the 
clients on connection, as the clients are responsible for 
unpacking the PDO memory. 

Scanner Configuration 
The scanner configuration XML file is generated from 

a bus configuration XML file and a directory of EtherCAT 
Slave Information (ESI) files provided by the slave 
vendors. The bus configuration maps bus positions to 
unique names and also selects the oversampling rate for 
the Beckhoff eXtreme Fast Control (XFC)[10] devices 
that can produce more than one sample per bus cycle, as 
below: 

 
<chain> 

<device type_name="EL2004" revision="0x00100000" 
position="1" name="OUT0" />  

<device type_name="EL3702" revision="0x00020000" 
position="2" name="RF0" oversample="11" /> 
</chain> 
 

The ESI files describe the named registers present in 
each slave. 

ASYN DRIVER 
The EPICS device support for the EtherCAT Scanner 

uses the asynPortDriver C++ class. On iocInit the bus 
configuration is read over the UNIX socket used for IPC. 
One port is created for each slave, and one for the bus 
master status. Port names for each device and asynInt32 
parameters for each register are automatically generated 
from the device names assigned in the bus configuration 
file and the register names in the ESI file. Additional ports 
can be instantiated to support oversampling devices and 
to add triggered circular buffers to any channel. Test 
templates are generated from the ESI file for each device 
using the Python libxml2 library, but the final template 
for each device is hand-written to comply with record 
naming and interface conventions. 

EtherCAT port drivers implement the 
ProcessDataObserver interface. The socket read thread 
maintains a list of observers and calls a method on this 
interface to deliver PDO data on each bus cycle. The port 
driver unpacks the appropriate registers from the PDO 
data using the PDO mapping information provided by the 
scanner on connection, and writes the asynPortDriver 
parameter cache. An epicsMessageQueue delivers write 
commands from the port drivers to the socket write 
thread. 

The master port driver reports network cable link 
status, number of connected slaves and slave state mode 
bits. One limitation of the current device support is the 
inability of the asynPortDriver to return an alarm; this 
will be fixed in a future release of Asyn. 

PROGRESS TO DATE 
The EPICS implementation was tested with slaves from 

Beckhoff (Verl, Germany), SMC Pneumatics (Tokyo, 
Japan) and National Instruments (Austin, TX, USA). 
Most slaves tested are from Beckhoff, and these come 
with comprehensive ESI files. The National Instruments 
backplane needed its configuration EEPROM to be pre-
programmed before it could be used with the Etherlab 
master. Products from SMC Pneumatics have limited 
availability of slave information files, and for National 
Instruments, the re-configurable EtherCAT backplane 
does not lend itself to a fixed file entry. Diamond is also 
investigating with National Instruments whether higher 
data rates can be supported as with Beckhoff XFC slaves. 

As part of Diamond's latest build phase, EtherCAT 
technology is being incorporated into new beamline front-
ends. The build tree for each IOC incorporates generation 
of the scanner configuration XML file. A Python script is 
used to expand the simplistic XML description in the 
build tree into the full XML configuration file. All the 
Asyn ports are auto-generated at start-up, simplifying the 
IOC boot script. 

The transition from VME based IOCs, running 
VxWorks to Linux PC IOCs with EtherCAT, has been 
relatively straightforward. Very few changes were 
required to the client EPICS applications. Modifications 
mainly consisted of substituting the new Asyn port names 
in place of VME I/O references, along with the creation 
of new, simpler IOC boot scripts. 

CONCLUSION 
EtherCAT was integrated with the EPICS control 

system toolkit on a Linux Real-time platform. EtherCAT 
devices are configured and scanned using the Etherlab 
open-source master. The bus scanner communicates with 
an Asyn driver making I/O signals and configuration 
information available to EPICS IOCs. The bus scanner 
broadcasts the PDOs to several soft IOCs that can run in 
the same server for segregation of technical areas. The 
configuration in the scanner process is reused in the Asyn 
driver. The driver automatically creates at start-up one 
port per slave and one port for the master status. 

The solution is being adopted for future control system 
deployments in the next phase of photon beamline 
construction at Diamond Light Source.  
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