
INTEGRATING ETHERCAT BASED IO INTO EPICS AT DIAMOND

R. Mercado, I. Gillingham, J. Rowland, K. Wilkinson
Diamond Light Source, Oxfordshire, UK

Abstract
Diamond Light Source is actively investigating the use

of EtherCAT-based remote I/O modules for the next phase
of photon beamline construction. Ethernet-based I/O in
general is attractive, because of reduced equipment
footprint, flexible configuration and reduced cabling.
EtherCAT offers, in addition, the possibility of using
inexpensive Ethernet hardware, off-the-shelf components
with a throughput comparable to that of current VME-
based solutions. This paper presents the work to integrate
EtherCAT-based I/O to the EPICS control system, listing
platform decisions, requirements considerations and
software design, and discussing the use of real time pre-
emptive Linux extensions to support high-rate devices
that require deterministic sampling.

INTRODUCTION
Diamond Light Source is a third-generation

synchrotron light source which started operations in 2007.
The current operational state includes twenty photon
beamlines, with a further twelve beamlines due to be
completed by 2017. Of these, three are in advanced stages
of design and construction.

Diamond’s control system is based on the EPICS
control system toolkit[1][2]. In the current control system,
generic I/O is interfaced through a range of VME
hardware. This architecture is being reconsidered in the
context of the next phase of beamline construction [3]. In
the new architecture most I/O functionality, including
motion control, video and I/O for analogue and digital
signals, will be realised through Ethernet-attached I/O.

Ethernet-based I/O allows the replacement of VME
crates by 1U x86 PC as the EPICS input output controller
(IOC) servers. This saves rack space and uses easily
replaceable standard computing server hardware,
available from many manufacturers; configuration is
made more flexible because signals do not need to be
concentrated in a single crate. The use of Cat6 cabling is
an additional advantage.

ETHERCAT
EtherCAT[4][5] is a real-time Ethernet protocol that

relies on conventional Ethernet frames with very short
cycle times and efficient bandwidth utilisation. The
protocol uses the full duplex mode of Ethernet; each
communication direction is operated independently of the
other.

EtherCAT operates with a master that passes EtherCAT
telegrams to a series of EtherCAT slaves. The EtherCAT
master uses standard Ethernet controller hardware, whilst
the slaves use a custom slave controller. The slaves

process the incoming telegrams directly; they extract or
insert user data and transfer the telegrams to slaves
downstream, each slave introducing a delay of a few
nanoseconds. The last EtherCAT slave automatically
returns the processed telegram back to the master as a
response telegram.

Each EtherCAT slave includes a controller with a
Fieldbus Memory Management Unit (FMMU), which
allows the mapping of logical addresses in the telegram to
physical ones within the slave. The FMMU converts
logical addresses to physical ones via an internal table,
configured at slave initialisation. It is able to address
physical locations down to the level of individual bits and
is configured at start-up.

The telegram structure, combined with the FMMU
capabilities, allows several slaves to be addressed in a
single Ethernet frame. This characteristic significantly
reduces the overhead in comparison to other Ethernet
fieldbus protocols and is well suited to addressing devices
that may have a payload of only a few bytes, such as
digital I/O devices, typical of industrial automation.

The registers in each slave that can be mapped by the
FMMUs are known as Process Data Objects (PDOs).
After configuration the primary EtherCAT telegram
present on the bus is Logical Memory Read and Write
(LRW). This exchanges PDO data bi-directionally
between the master and multiple slaves.

EPICS SOFTWARE COMPONENTS
Diamond EPICS soft IOCs typically run on x86 Linux

servers. Prior to interfacing EtherCAT, there had not been
a requirement for deterministic sampling on this platform,
as operations that relied on more precise timing were
delegated to dedicated VME hardware. x86 servers
therefore typically ran a standard RedHat Linux kernel.
To enable the deterministic performance of EtherCAT, a
Real Time Linux kernel was required for servers running
the EtherCAT master. The details are described in the next
section.

A further requirement that was considered was the need
to segregate functionality into separate IOCs that could be
maintained separately, for example for separate technical
areas. To realise this, multiple EPICS IOC instances
needed to have access to every EtherCAT bus scanner.
The resulting architecture is shown in Figure 1.

In the physical realisation, a server has a minimum of
two Ethernet interfaces, one for standard TCP/IP traffic
and an EtherCAT-dedicated interface. There is a single
master for every EtherCAT-dedicated interface. The
current deployments have one such interface per server,
but more could be used if the application requires further
segregation of components within the same EPICS IOC
server.

WEMAU004 Proceedings of ICALEPCS2011, Grenoble, France

662C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Integrating industrial/commercial devices

Figure 1: Software components. Cyan repres
from Etherlab, whilst yellow represents elem
Diamond.

REAL-TIME LINUX
Timing jitter in the EtherCAT bus m

results in irregular bus cycles, which resu
samples. A standard Linux kernel runnin
configuration on a multi-core mach
approximately 0.1% of bus cycles when run
rate of 1 kHz, as measured using a slave d
internal clock and cycle counter.

The kernel patch pre-empt real-time (PR
reduces latency and adds the ability to p
kernel critical sections. It is actively d
RedHat, and commercial support is availabl
product [6]. PREEMPT_RT was chosen ove
time Linux systems such as RTAI [7] o
because of the standard API, minimal
installation and acceptable performance f
applications.

Installation of PREEMPT_RT is realised b
kernel RPM and configuration scripts to
thread priorities. The user space APIs are
the necessary calls are already present a
POSIX ADVANCED REALTIME standar
applications can be developed and tested o
system, albeit with reduced performan
application Diamond is using kernel 2.6.33
MRG 1.3.

The following API features are used in t
master:
• high-precision timers using clock_nano
• mlockall, to prevent the process image p
• SCHED_FIFO pthread scheduling
• PTHREAD_PRIO_INHERIT mutexes

sents elements

ments from

master process
ult in missed
ng a desktop
hine misses
nning at a bus

device with an

REEMPT_RT)
pre-empt most
developed by
e as the MRG
er harder real-
r Xenomai[8]
lly disruptive
for EtherCAT

by means of a
assign kernel
unchanged as

as part of the
rd[9], so that
on a standard
ce. For this
3.9-rt31, from

the EtherCAT

sleep
paging

No missed cycles are obser
PREEMPT_RT, under CPU loaded
EtherCAT bus rate of 1 kHz. Table 1
in latency measured using the cyclic
Kernel 2.6.18 is the standard kernel f
not have high-precision timers, kern
precision timers but is not fully pre-e
2.6.33-rt31 has the PREEMPT_RT pa

Table 1: Timing Late

Kernel Mean M

2.6.18 1630 us 2

2.6.33 52 us 2

2.6.33-rt31 5 us 5

ETHERCAT MAS
Diamond uses the EtherCA

etherlab.org[10], an open-source k
implements the EtherCAT master
FMMU configuration. The generation
to the user. This allows the master to
of different real-time Linux implemen
also provides patched network driver
network cards to support interrupt-fre
reduced latency. However these were
generic interface, which uses PF_PA
provides acceptable performance. To
necessary to disable interrupt coales
driver to allow high bus rates (up to 10

The EtherCAT master modules h
into a Dynamic Kernel Module Sup
that is built automatically at boot ti
upgraded.

BUS SCANNER
The Bus Scanner generates bus

steady rate and multiplexes EtherCAT
clients over a pre-threaded UNIX do
for inter-process communication (IP
functional isolation at the record
multiple EPICS IOCs to share the sa
separately. Broadcast protocols such
memory were not chosen because of
expected clients and the adde
implementing connection managem
Real-time and non-real-time tasks ar
use of message queues implemen
mutexes and condition variables, with
to prevent priority inversion.

On start-up the Bus Scanner reads
configures the FMMUs, and puts the
to into operational (OP) mode. The bu
started, and every 1ms the LRW
received. The PDO data is pushed on
in non-blocking circular buffer mod

rved when using
conditions and an

shows the difference
ctest tool. Note that
for RHEL5 and does
nel 2.6.33 has high-
emptable, and kernel
atch applied.

ency

Max

2745 us

243 us

54 us

STER
AT master from
kernel module that
state machine and

n of bus cycles is left
work with a variety

ntations. The master
rs for some common
ee operation and thus
e not required as the

ACKET raw sockets,
o achieve this, it is
cing in the network
0 kHz).

have been packaged
pport (DKMS) RPM
ime if the kernel is

R
cycle packets at a

T bus access between
omain stream socket
PC). This provides
level by allowing

ame bus, but restart
h as UDP or shared
f the low number of
ed complexity of

ment and reliability.
re decoupled by the
nted using pthread
h priority inheritance

a configuration file,
slave state machines

us cycle timer is then
frame is sent and
to each client queue

de. Write commands

Proceedings of ICALEPCS2011, Grenoble, France WEMAU004

Integrating industrial/commercial devices 663 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

from each client are added to the Scanner command
queue in blocking mode, and merged into the local copy
of PDO memory ready for the next bus cycle. The Bus
Scanner also distributes the FMMU assignments to the
clients on connection, as the clients are responsible for
unpacking the PDO memory.

Scanner Configuration
The scanner configuration XML file is generated from

a bus configuration XML file and a directory of EtherCAT
Slave Information (ESI) files provided by the slave
vendors. The bus configuration maps bus positions to
unique names and also selects the oversampling rate for
the Beckhoff eXtreme Fast Control (XFC)[10] devices
that can produce more than one sample per bus cycle, as
below:

<chain>

<device type_name="EL2004" revision="0x00100000"
position="1" name="OUT0" />

<device type_name="EL3702" revision="0x00020000"
position="2" name="RF0" oversample="11" />
</chain>

The ESI files describe the named registers present in
each slave.

ASYN DRIVER
The EPICS device support for the EtherCAT Scanner

uses the asynPortDriver C++ class. On iocInit the bus
configuration is read over the UNIX socket used for IPC.
One port is created for each slave, and one for the bus
master status. Port names for each device and asynInt32
parameters for each register are automatically generated
from the device names assigned in the bus configuration
file and the register names in the ESI file. Additional ports
can be instantiated to support oversampling devices and
to add triggered circular buffers to any channel. Test
templates are generated from the ESI file for each device
using the Python libxml2 library, but the final template
for each device is hand-written to comply with record
naming and interface conventions.

EtherCAT port drivers implement the
ProcessDataObserver interface. The socket read thread
maintains a list of observers and calls a method on this
interface to deliver PDO data on each bus cycle. The port
driver unpacks the appropriate registers from the PDO
data using the PDO mapping information provided by the
scanner on connection, and writes the asynPortDriver
parameter cache. An epicsMessageQueue delivers write
commands from the port drivers to the socket write
thread.

The master port driver reports network cable link
status, number of connected slaves and slave state mode
bits. One limitation of the current device support is the
inability of the asynPortDriver to return an alarm; this
will be fixed in a future release of Asyn.

PROGRESS TO DATE
The EPICS implementation was tested with slaves from

Beckhoff (Verl, Germany), SMC Pneumatics (Tokyo,
Japan) and National Instruments (Austin, TX, USA).
Most slaves tested are from Beckhoff, and these come
with comprehensive ESI files. The National Instruments
backplane needed its configuration EEPROM to be pre-
programmed before it could be used with the Etherlab
master. Products from SMC Pneumatics have limited
availability of slave information files, and for National
Instruments, the re-configurable EtherCAT backplane
does not lend itself to a fixed file entry. Diamond is also
investigating with National Instruments whether higher
data rates can be supported as with Beckhoff XFC slaves.

As part of Diamond's latest build phase, EtherCAT
technology is being incorporated into new beamline front-
ends. The build tree for each IOC incorporates generation
of the scanner configuration XML file. A Python script is
used to expand the simplistic XML description in the
build tree into the full XML configuration file. All the
Asyn ports are auto-generated at start-up, simplifying the
IOC boot script.

The transition from VME based IOCs, running
VxWorks to Linux PC IOCs with EtherCAT, has been
relatively straightforward. Very few changes were
required to the client EPICS applications. Modifications
mainly consisted of substituting the new Asyn port names
in place of VME I/O references, along with the creation
of new, simpler IOC boot scripts.

CONCLUSION
EtherCAT was integrated with the EPICS control

system toolkit on a Linux Real-time platform. EtherCAT
devices are configured and scanned using the Etherlab
open-source master. The bus scanner communicates with
an Asyn driver making I/O signals and configuration
information available to EPICS IOCs. The bus scanner
broadcasts the PDOs to several soft IOCs that can run in
the same server for segregation of technical areas. The
configuration in the scanner process is reused in the Asyn
driver. The driver automatically creates at start-up one
port per slave and one port for the master status.

The solution is being adopted for future control system
deployments in the next phase of photon beamline
construction at Diamond Light Source.

REFERENCES
[1] M.T. Heron et al. “The Diamond Light Source

Control System”, EPAC 2006, Edinburgh, June 2006,
THPCH113, p. 3068 (2006);
http://www.JACoW.org.

[2] M.T. Heron et al. “Implementation, commissioning
and current status of the Diamond Light Source
Control System”, ICALEPS 2007, Knoxville,
Tennessee, USA, October 2007, TOAA05, p. 56
(2007); http://www.JACoW.org.

WEMAU004 Proceedings of ICALEPCS2011, Grenoble, France

664C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Integrating industrial/commercial devices

[3] I.J. Gillingham et. al, “Diamond’s Transition from
VME to Fieldbus Based Distributed Control”,
PCaPAC 2010, Saskatoon, Canada, October 2010,
THCOAA04, p. 124 (2010); http://www.JACoW.org.

[4] International Electrotechnical Commission,
“Industrial Communication Networks Fieldbus
specifications Part 3-12: Data-link layer service
definition – Part 4-12: Data-link layer protocol
specification – Type 12 elements”, IEC, 61158-3/4-
12:2007

[5] D. Jansen and H Büttner, “Real Time Ethernet: the
EtherCAT Solution”, Computing and Control
Engineering Journal, 2004 15(1), p. 16

[6] Red Hat Enterprise MRG Documentation.
http://docs.redhat.com/docs/en-
US/Red_Hat_Enterprise_MRG [Accessed Aug 2011]

[7] Dipartimento di Ingegneria Aerospaziale -
Politecnico di Milano “Real Time Application
Interface - RTAI“ https://www.rtai.org/ [Accessed
Sep 2011]

[8] Xenomai: Real-Time Framework for Linux
http://www.xenomai.org [Accessed Sep 2011]

[9] IEEE and The Open Group “The Open Group Base
Specification Issue 6”
http://pubs.opengroup.org/onlinepubs/009695399
[Accessed Sep 2011]

[10] IgH EtherCAT master for Linux.
http://www.etherlab.org [Accessed Aug 2011]

[11] Beckhoff “eXtreme Fast Control Technology.”
http://www.beckhoff.com/english/default.htm?highli
ghts/xfc/components.htm [Accessed Sep 2011]

Proceedings of ICALEPCS2011, Grenoble, France WEMAU004

Integrating industrial/commercial devices 665 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

