Author: Power, M.A.
Paper Title Page
MOPMS024 Evolution of the Argonne Tandem Linear Accelerator System (ATLAS) Control System 371
  • M.A. Power, F.H. Munson
    ANL, Argonne, USA
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Given that the Argonne Tandem Linac Accelerator System (ATLAS) recently celebrated its 25th anniversary, this paper will explore the past, present and future of the ATLAS Control System and how it has evolved along with the accelerator and control system technology. ATLAS as we know it today, originated with a Tandem Van de Graff in the 1960's. With the addition of the Booster section in the late 1970's, came the first computerized control. ATLAS itself was placed into service on June 25, 1985 and was the world's first superconducting linear accelerator for ions. Since its dedication as a National User Facility, more than a thousand experiments by more than 2,000 users world-wide, have taken advantage of the unique capabilities it provides. Today, ATLAS continues to be a user facility for physicists who study the particles that form the heart of atoms. Its most recent addition, CARIBU (Californium Rare Isotope Breeder Upgrade), creates special beams that feed into ATLAS. ATLAS is similar to a living organism, changing and responding to new technological challenges and research needs. As it continues to evolve, so does the control system: from the original days using a DEC PDP-11/34 computer and 2 CAMAC crates, to a DEC Alpha computer running Vsystem software and more than twenty CAMAC crates, to distributed computers and VME systems. Future upgrades are also in the planning stages that will continue to evolve the control system.
poster icon Poster MOPMS024 [2.845 MB]