Author: Nadolski, L.S.
Paper Title Page
MOCAUIO04 The SESAME Project 31
 
  • A. Nadji, S. Abu Ghannam, Z. Qazi, I. Saleh
    SESAME, Amman, Jordan
  • P. Betinelli-Deck, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
  • J.-F. Gournay
    CEA/IRFU, Gif-sur-Yvette, France
  • M.T. Heron
    Diamond, Oxfordshire, United Kingdom
  • H. Hoorani
    NCP, Islamabad, Pakistan
  • B. Kalantari
    PSI, Villigen, Switzerland
  • E. D. Matias, G. Wright
    CLS, Saskatoon, Saskatchewan, Canada
 
  SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is a third generation synchrotron light source under construction near Amman (Jordan), which is expected to begin operation in 2015. SESAME will foster scientific and technological excellence in the Middle East and the Mediterranean region, build scientific bridges between neighbouring countries and foster mutual understanding through international cooperation. The members of SESAME are currently Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority and Turkey. An overview about the progress of the facility and the general plan will be given in this talk. Then I will focus on the control system by explaining how this part is managed: the technical choice, the main deadlines, the local staff, the international virtual control team, and the first results.  
slides icon Slides MOCAUIO04 [8.526 MB]  
 
WEPMS026 The TimBel Synchronization Board for Time Resolved Experiments at Synchrotron SOLEIL 1036
 
  • J.P. Ricaud, P. Betinelli-Deck, J. Bisou, X. Elattaoui, C. Laulhé, P. Monteiro, L.S. Nadolski, S. Ravy, G. Renaud, M.G. Silly, F. Sirotti
    SOLEIL, Gif-sur-Yvette, France
 
  Time resolved experiments are one of the major services that synchrotrons can provide to scientists. The short, high frequency and regular flashes of synchrotron light are a fantastic tool to study the evolution of phenomena over time. To carry out time resolved experiments, beamlines need to synchronize their devices with these flashes of light with a jitter shorter than the pulse duration. For that purpose, Synchrotron SOLEIL has developed the TimBeL board fully interfaced to TANGO framework. This paper presents the main features required by time resolved experiments and how we achieved our goals with the TimBeL board.  
poster icon Poster WEPMS026 [1.726 MB]