Author: Matsushita, T.
Paper Title Page
MOPMS032 Re-engineering of the SPring-8 Radiation Monitor Data Acquisition System 401
 
  • T. Masuda, M. Ishii, K. Kawata, T. Matsushita, C. Saji
    JASRI/SPring-8, Hyogo-ken, Japan
 
  We have re-engineered the data acquisition system for the SPring-8 radiation monitors. Around the site, 81 radiation monitors are deployed. Seventeen of them are utilized for the radiation safety interlock system for the accelerators. The old data-acquisition system consisted of dedicated NIM-like modules linked with the radiation monitors, eleven embedded computers for data acquisition from the modules and three programmable logic controllers (PLCs) for integrated dose surveillance. The embedded computers periodically collected the radiation data from GPIB interfaces with the modules. The dose-surveillance PLCs read analog outputs in proportion to the radiation rate from the modules. The modules and the dose-surveillance PLCs were also interfaced with the radiation safety interlock system. These components in the old system were dedicated, black-boxed and complicated for the operations. In addition, GPIB interface was legacy and not reliable enough for the important system. We, therefore, decided to replace the old system with a new one based on PLCs and FL-net, which were widely used technologies. We newly deployed twelve PLCs as substitutes for all the old components. Another PLC with two graphic panels is installed near a central control room for centralized operations and watches for the all monitors. All the new PLCs and a VME computer for data acquisition are connected through FL-net. In this paper, we describe the new system and the methodology of the replacement within the short interval between the accelerator operations.  
poster icon Poster MOPMS032 [1.761 MB]  
 
WEMMU011 Radiation Safety Interlock System for SACLA (XFEL/SPring-8) 710
 
  • M. Kago, T. Matsushita, N. Nariyama, C. Saji, R. Tanaka, A. Yamashita
    JASRI/SPring-8, Hyogo-ken, Japan
  • Y. Asano, T. Hara, T. Itoga, Y. Otake, H. Takebe
    RIKEN/SPring-8, Hyogo, Japan
  • H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  The radiation safety interlock system for SACLA (XFEL/SPring-8) protects personnel from radiation hazards. The system controls access to the accelerator tunnel, monitors the status of safety equipment such as emergency stop buttons, and gives permission for accelerator operation. The special feature of the system is a fast beam termination when the system detects an unsafe state. A total beam termination time is required less than 16.6 ms (linac operation repetition cycle: 60 Hz). Especially important is the fast beam termination when the electron beams deviates from the proper transport route. Therefore, we developed optical modules in order to transmit a signal at a high speed for a long distance (an overall length of around 700 m). An exclusive system was installed for fast judgment of a proper beam route. It is independent from the main interlock system which manages access control and so on. The system achieved a response time of less than 7ms, which is sufficient for our demand. The construction of the system was completed in February 2011 and the system commenced operation in March 2011. We will report on the design of the system and its detailed performance.  
slides icon Slides WEMMU011 [0.555 MB]  
poster icon Poster WEMMU011 [0.571 MB]  
 
TUDAUST01 Inauguration of the XFEL Facility, SACLA, in SPring-8 585
 
  • R. Tanaka, Y. Furukawa, T. Hirono, M. Ishii, M. Kago, A. Kiyomichi, T. Masuda, T. Matsumoto, T. Matsushita, T. Ohata, C. Saji, T. Sugimoto, M. Yamaga, A. Yamashita
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Fukui, T. Hatsui, N. Hosoda, H. Maesaka, T. Ohshima, T. Otake, Y. Otake, H. Takebe
    RIKEN/SPring-8, Hyogo, Japan
 
  The construction of the X-ray free electron laser facility (SACLA) in SPring-8 started in 2006. After 5 years of construction, the facility completed to accelerate electron beams in February 2011. The main component of the accelerator consists of 64 C-band RF units to accelerate beams up to 8GeV. The beam shape is compressed to a length of 30fs, and the beams are introduced into the 18 insertion devices to generate 0.1nm X-ray laser. The first SASE X-ray was observed after the beam commissioning. The beam tuning will continue to achieve X-ray laser saturation for frontier scientific experiments. The control system adopts the 3-tier standard model by using MADOCA framework developed in SPring-8. The upper control layer consists of Linux PCs for operator consoles, Sybase RDBMS for data logging and FC-based NAS for NFS. The lower consists of 100 Solaris-operated VME systems with newly developed boards for RF waveform processing, and the PLC is used for slow control. The Device-net is adopted for the frontend devices to reduce signal cables. The VME systems have a beam-synchronized data-taking link to meet 60Hz beam operation for the beam tuning diagnostics. The accelerator control has gateways to the facility utility system not only to monitor devices but also to control the tuning points of the cooling water. The data acquisition system for the experiments is challenging. The data rate coming from 2D multiport CCD is 3.4Gbps that produces 30TB image data in a day. A sampled data will be transferred to the 10PFlops supercomputer via 10Gbps Ethernet for data evaluation.  
slides icon Slides TUDAUST01 [5.427 MB]