Paper |
Title |
Page |
MOPKN005 |
Construction of New Data Archive System in RIKEN RI Beam Factory |
90 |
|
- M. Komiyama, N. Fukunishi
RIKEN Nishina Center, Wako, Japan
- A. Uchiyama
SHI Accelerator Service Ltd., Tokyo, Japan
|
|
|
The control system of RIKEN RI Beam Factory (RIBF) is based on EPICS and three kinds of data archive system have been in operation. Two of them are EPICS applications and the other is MyDAQ2 developed by SPring-8 control group. MyDAQ2 collects data such as cooling-water temperature and magnet temperature etc and is not integrated into our EPICS control system. In order to unify the three applications into a single system, we have started to develop a new system since October, 2009. One of the requirements for this RIBF Control data Archive System (RIBFCAS) is that it routinely collects more than 3000 data from 21 EPICS Input/Output Controllers (IOC) at every 1 to 60 seconds, depending on the type of equipment. An ability to unify MyDAQ2 database is also required. To fulfill these requirements, a Java-based system is constructed, in which Java Channel Access Light Library (JCAL) developed by J-PARC control group is adopted in order to acquire large amounts of data as mentioned above. The main advantage of JCAL is that it is based on single threaded architecture for thread safety and user thread can be multi-threaded. The RIBFCAS hardware consists of an application server, a database server and a client-PC. The client application is executed on the Adobe AIR runtime. At the moment, we succeeded in getting about 3000 data from 21 EPICS IOCs at every 10 seconds for one day, and validation tests are proceeding. Unification of MyDAQ2 is now in progress and it is scheduled to be completed in 2011.
|
|
|
Poster MOPKN005 [27.545 MB]
|
|
|
WEPMU038 |
Network Security System and Method for RIBF Control System |
1161 |
|
- A. Uchiyama
SHI Accelerator Service Ltd., Tokyo, Japan
- M. Fujimaki, N. Fukunishi, M. Komiyama, R. Koyama
RIKEN Nishina Center, Wako, Japan
|
|
|
In RIKEN RI beam factory (RIBF), the local area network for accelerator control system (control system network) consists of commercially produced Ethernet switches, optical fibers and metal cables. On the other hand, E-mail and Internet access for unrelated task to accelerator operation are usually used in RIKEN virtual LAN (VLAN) as office network. From the viewpoint of information security, we decided to separate the control system network from the Internet and operate it independently from VLAN. However, it was inconvenient for users for the following reason; it was unable to monitor the information and status of accelerator operation from the user's office in a real time fashion. To improve this situation, we have constructed a secure system which allows the users to get the accelerator information from VLAN to control system network, while preventing outsiders from having access to the information. To allow access to inside control system network over the network from VLAN, we constructed reverse proxy server and firewall. In addition, we implement a system to send E-mail as security alert from control system network to VLAN. In our contribution, we report this system and the present status in detail.
|
|
|
Poster WEPMU038 [45.776 MB]
|
|
|