Author: Hsu, S.Y.
Paper Title Page
MOPMU002 Progress of the TPS Control System Development 425
 
  • J. Chen, Y.-T. Chang, Y.K. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Kuo, D. Lee, C.Y. Liao, Y.R. Pan, C.-J. Wang, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a low-emittance 3-GeV synchrotron light source which is in construction on the National Synchrotron Radiation Research Center (NSRRC) campus. The control system for the TPS is based upon EPICS framework. The standard hardware and software components have been defined. The prototype of various subsystems is on going. The event based timing system has been adopted. The power supply control interface accompanied with orbit feedback support have also been defined. The machine protection system is in design phase. Integration with the linear accelerator system which are installed and commissioned at temporary site for acceptance test has already been done. The interface to various systems is still on going. The infrastructures of high level and low level software are on going. Progress will be summarized in the report.  
 
WEPMU034 Infrastructure of Taiwan Photon Source Control Network 1145
 
  • Y.-T. Chang, J. Chen, Y.-S. Cheng, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Kuo, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  A reliable, flexible and secure network is essential for the Taiwan Photon Source (TPS) control system which is based upon the EPICS toolkit framework. Subsystem subnets will connect to control system via EPICS based CA gateways for forwarding data and reducing network traffic. Combining cyber security technologies such as firewall, NAT and VLAN, control network is isolated to protect IOCs and accelerator components. Network management tools are used to improve network performance. Remote access mechanism will be constructed for maintenance and troubleshooting. The Ethernet is also used as fieldbus for instruments such as power supplies. This paper will describe the system architecture for the TPS control network. Cabling topology, redundancy and maintainability are also discussed.