Author: Epaud, F.
Paper Title Page
MOPKS010 Fast Orbit Correction for the ESRF Storage Ring 177
  • J.M. Koch, F. Epaud, E. Plouviez, K.B. Scheidt
    ESRF, Grenoble, France
  Up to now, at the ESRF, the correction of the orbit position has been performed with two independent systems: one dealing with the slow movements and one correcting the motion in a range of up to 200Hz but with a limited number of fast BPMs and steerers. These latter will be removed and one unique system will cover the frequency range from DC to 200Hz using all the 224 BPMs and the 96 steerers. Indeed, thanks to the procurement of Libera Brilliance units and the installation of new AC power supplies, it is now possible to access all the Beam positions at a frequency of 10 kHz and to drive a small current in the steerers in a 200Hz bandwidth. The first tests of the correction of the beam position have been performed and will be presented. The data processing will be presented as well with a particular emphasis on the development inside the FPGA.  
MOPKS014 Architecture and Control of the Fast Orbit Correction for the ESRF Storage Ring 189
  • F. Epaud, J.M. Koch, E. Plouviez
    ESRF, Grenoble, France
  Two years ago, the electronics of all the 224 Beam Position Monitors (BPM) of the ESRF Storage Ring were replaced by the commercial Libera Brilliance units to drastically improve the speed and position resolution of the Orbit measurement. Also, at the start of this year, all the 96 power supplies that drive the Orbit steerers have been replaced by new units that now cover a full DC-AC range up to 200Hz. We are now working on the replacement of the previous Fast Orbit Correction system. This new architecture will also use the 224 Libera Brilliance units and in particular the 10 KHz optical links handled by the Diamond Communication Controller (DCC) which has now been integrated within the Libera FPGA as a standard option. The 224 Liberas are connected together with the optical links to form a redundant network where the data are broadcast and are received by all nodes within 40 μS. The 4 corrections stations will be based on FPGA cards (2 per station) also connected to the FOFB network as additional nodes and using the same DCC firmware on one side and are connected to the steerers power supplies using RS485 electronics standard on the other side. Finally two extra nodes have been added to collect data for diagnostics and to give BPMs positions to the beamlines at high rate. This paper will present the network architecture and the control software to operate this new equipment.  
poster icon Poster MOPKS014 [3.242 MB]  
TUCAUST03 The Upgrade Programme for the ESRF Accelerator Control System 570
  • J.M. Meyer, J.M. Chaize, F. Epaud, F. Poncet, J.L. Pons, B. Regad, E.T. Taurel, B. Vedder, P.V. Verdier
    ESRF, Grenoble, France
  To reach the goals specified in the ESRF upgrade program [1], for the new experiments to be built, the storage ring needs to be modified. The optics must to be changed to allow up to seven meter long straight sections and canted undulator set-ups. Better beam stabilization and feedback systems are necessary for the nano-focus experiments planned. Also we are undergoing a renovation and modernization phase to increase the lifetime of the accelerator and its control system. This paper resumes the major upgrade projects, like the new BPM system, the fast orbit feedback or the ultra small vertical emittance, and their implications on the control system. Ongoing modernization projects such as the solid state radio frequency amplifier or the HOM damped cavities are described. Software upgrades of several sub-systems like vacuum and insertion devices, which are planned for this year or for the long shutdown period beginning of 2012 are covered as well. The final goal is to move to a Tango only control system.
slides icon Slides TUCAUST03 [1.750 MB]