Author: Battistello, L.
Paper Title Page
TUDAUST02 Status Report of the FERMI@Elettra Control System 589
 
  • M. Lonza, A. Abrami, F. Asnicar, L. Battistello, A.I. Bogani, R. Borghes, V. Chenda, S. Cleva, A. Curri, M. De Marco, M.F. Dos Santos, G. Gaio, F. Giacuzzo, G. Kourousias, G. Passos, R. Passuello, L. Pivetta, M. Prica, M. Pugliese, C. Scafuri, G. Scalamera, G. Strangolino, D. Vittor, L. Zambon
    ELETTRA, Basovizza, Italy
 
  Funding: The work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
FERMI@Elettra is a new 4th-generation light source based on a seeded Free Electron Laser (FEL) presently under commissioning in Trieste, Italy. It is the first seeded FEL in the world designed to produce fundamental output wavelength down to 4 nm with High Gain Harmonic Generation (HGHG). Unlike storage ring based synchrotron light sources that are well known machines, the commissioning of a new-concept FEL is a complex and time consuming process consisting in thorough testing, understanding and optimization, in which a reliable and powerful control system is mandatory. In particular, integrated shot-by-shot beam manipulation capabilities and easy to use high level applications are crucial to allow an effective and smooth machine commissioning. The paper reports the status of the control system and the experience gained in two years of alternating construction and commissioning phases.
 
slides icon Slides TUDAUST02 [8.064 MB]  
 
WEPMU025 Equipment and Machine Protection Systems for the FERMI@Elettra FEL facility 1119
 
  • F. Giacuzzo, L. Battistello, L. Fröhlich, G. Gaio, M. Lonza, G. Scalamera, G. Strangolino, D. Vittor
    ELETTRA, Basovizza, Italy
 
  Funding: The work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
FERMI@Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac presently under commissioning in Trieste, Italy. Three PLC-based systems communicating to each other assure the protection of machine devices and equipment. The first is the interlock system for the linac radiofrequency plants; the second is dedicated to the protection of vacuum devices and magnets; the third is in charge of protecting various machine components from radiation damage. They all make use of a distributed architecture based on fieldbus technology and communicate with the control system via Ethernet interfaces and dedicated Tango device servers. A complete set of tools including graphical panels, logging and archiving systems are used to monitor the systems from the control room.
 
poster icon Poster WEPMU025 [0.506 MB]