Author: Banas, E.     [Banaś, E.]
Paper Title Page
MOBAUST02 The ATLAS Detector Control System 5
 
  • S. Schlenker, S. Arfaoui, S. Franz, O. Gutzwiller, C.A. Tsarouchas
    CERN, Geneva, Switzerland
  • G. Aielli, F. Marchese
    Università di Roma II Tor Vergata, Roma, Italy
  • G. Arabidze
    MSU, East Lansing, Michigan, USA
  • E. Banaś, Z. Hajduk, J. Olszowska, E. Stanecka
    IFJ-PAN, Kraków, Poland
  • T. Barillari, J. Habring, J. Huber
    MPI, Muenchen, Germany
  • M. Bindi, A. Polini
    INFN-Bologna, Bologna, Italy
  • H. Boterenbrood, R.G.K. Hart
    NIKHEF, Amsterdam, The Netherlands
  • H. Braun, D. Hirschbuehl, S. Kersten, K. Lantzsch
    Bergische Universität Wuppertal, Wuppertal, Germany
  • R. Brenner
    Uppsala University, Uppsala, Sweden
  • D. Caforio, C. Sbarra
    Bologna University, Bologna, Italy
  • S. Chekulaev
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S. D'Auria
    University of Glasgow, Glasgow, United Kingdom
  • M. Deliyergiyev, I. Mandić
    JSI, Ljubljana, Slovenia
  • E. Ertel
    Johannes Gutenberg University Mainz, Institut für Physik, Mainz, Germany
  • V. Filimonov, V. Khomutnikov, S. Kovalenko
    PNPI, Gatchina, Leningrad District, Russia
  • V. Grassi
    SBU, Stony Brook, New York, USA
  • J. Hartert, S. Zimmermann
    Albert-Ludwig Universität Freiburg, Freiburg, Germany
  • D. Hoffmann
    CPPM, Marseille, France
  • G. Iakovidis, K. Karakostas, S. Leontsinis, E. Mountricha
    National Technical University of Athens, Athens, Greece
  • P. Lafarguette
    Université Blaise Pascal, Clermont-Ferrand, France
  • F. Marques Vinagre, G. Ribeiro, H.F. Santos
    LIP, Lisboa, Portugal
  • T. Martin, P.D. Thompson
    Birmingham University, Birmingham, United Kingdom
  • B. Mindur
    AGH University of Science and Technology, Krakow, Poland
  • J. Mitrevski
    SCIPP, Santa Cruz, California, USA
  • K. Nagai
    University of Tsukuba, Graduate School of Pure and Applied Sciences,, Tsukuba, Ibaraki, Japan
  • S. Nemecek
    Czech Republic Academy of Sciences, Institute of Physics, Prague, Czech Republic
  • D. Oliveira Damazio, A. Poblaguev
    BNL, Upton, Long Island, New York, USA
  • P.W. Phillips
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • A. Robichaud-Veronneau
    DPNC, Genève, Switzerland
  • A. Talyshev
    BINP, Novosibirsk, Russia
  • G.F. Tartarelli
    Universita' degli Studi di Milano & INFN, Milano, Italy
  • B.M. Wynne
    Edinburgh University, Edinburgh, United Kingdom
 
  The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of 140 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers based on the CERN JCOP framework allow for automatic control procedures, efficient error recognition and handling, manage the communication with external control systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS physics data acquisition system. A web-based monitoring system allows accessing the DCS operator interface views and browse the conditions data archive worldwide with high availability. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years and the LHC high luminosity upgrades are outlined.  
slides icon Slides MOBAUST02 [6.379 MB]  
 
WEMAU005 The ATLAS Transition Radiation Tracker (TRT) Detector Control System 666
 
  • J. Olszowska, E. Banaś, Z. Hajduk
    IFJ-PAN, Kraków, Poland
  • M. Hance, D. Olivito, P. Wagner
    University of Pennsylvania, Philadelphia, Pennsylvania, USA
  • T. Kowalski, B. Mindur
    AGH University of Science and Technology, Krakow, Poland
  • R. Mashinistov, K. Zhukov
    LPI, Moscow, Russia
  • A. Romaniouk
    MEPhI, Moscow, Russia
 
  Funding: CERN; MNiSW, Poland; MES of Russia and ROSATOM, Russian Federation; DOE and NSF, United States of America
TRT is one of the ATLAS experiment Inner Detector components providing precise tracking and electrons identification. It consists of 370 000 proportional counters (straws) which have to be filled with stable active gas mixture and high voltage biased. High voltage setting at distinct topological regions are periodicaly modified by closed-loop regulation mechanism to ensure constant gaseous gain independent of drifts of atmospheric pressure, local detector temperatures and gas mixture composition. Low voltage system powers front-end electronics. Special algorithms provide fine tuning procedures for detector-wide discrimination threshold equalization to guarantee uniform noise figure for whole detector. Detector, cooling system and electronics temperatures are continuosly monitored by ~ 3000 temperature sensors. The standard industrial and custom developed server applications and protocols are used for devices integration into unique system. All parameters originating in TRT devices and external infrastructure systems (important for Detector operation or safety) are monitored and used by alert and interlock mechanisms. System runs on 11 computers as PVSS (industrial SCADA) projects and is fully integrated with ATLAS Detector Control System.
 
slides icon Slides WEMAU005 [1.384 MB]  
poster icon Poster WEMAU005 [1.978 MB]