Keyword: EPICS
Paper Title Other Keywords Page
S07IC03 EPICS Architecture controls, database, distributed, network 278
 
  • L.R. Dalesio, A.J. Kozubal
    LANL, Los Alamos, New Mexico, USA
  • M.R. Kraimer
    ANL, Lemont, Illinois, USA
 
  Funding: Work at LANL supported and funded under the Department of Defense. US Army Strategic Defense Command. under the auspices of the Department of Energy.<br /> Work at ANL supported by U.S. Dept. of Energy, Office of Basic Energy Sciences, under Contract No W-31-109-ENG-38.
The Experimental Physics and Industrial Control System (EPICS) provides control and data acquisition for the experimental physics community. Because the capabilities required by the experimental physics community for control were not available through industry, we began the design and implementation of EPICS. It is a distributed process control system built on a software communication bus. The functional subsystems, which provide data acquisition, supervisory control, closed loop control, archiving, and alarm management, greatly reduce the need for programming. Sequential control is provided through a sequential control language, allowing the implementer to express state diagrams easily. Data analysis of the archived data is provided through an interactive tool. The timing system provides distributed synchronization for control and time stamped data for data correlation across nodes in the network. The system is scalable from a single test station with a low channel count to a large distributed network with thousands of channels. The functions provided to the physics applications have proven helpful to the experiments while greatly reducing the time to deliver controls.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S07IC03  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S13MMI06 A Virtual Control Panel Configuration Tool for the X-Window System controls, interface, software, network 468
 
  • J.O. Hill, L.R. Dalesio, D.M. Kerstiens
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported and funded under the Department of Defense, US Army Strategic Defense Command, under the auspices of the Department of Energy.
Computer Graphics Workstations are becoming increasingly popular for use as virtual process control and read back panels. The workstation’s CRT, keyboard, and pointing device are used in concert to produce a display that is in essence a control panel, even if actual switches and gauges are not present. The code behind these displays is most often specific to one display and not reusable for any other display. Recently, programs have been written allowing many of these virtual control panel displays to be configured without writing additional code. This approach allows the initial programming effort to be reapplied to many different display instances with minimal effort. These programs often incorporate many of the features of a graphics editor, allowing a pictorial model of the process under control to be incorporated into the control panel. We have just finished writing a second generation software system of this type for use with the X-Window system and the Experimental Physics and Industrial Control System (EPICS). This paper describes the primary features of our software, the framework of our design, and our observations after initial installation.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S13MMI06  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)