A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ohata, T.

Paper Title Page
TOAA03 Status of the X-Ray FEL Control System at SPring-8 50
 
  • T. Hirono, N. Hosoda, M. Ishii, T. Masuda, T. Matsushita, T. Ohata, M. T. Takeuchi, R. Tanaka, A. Yamashita
    JASRI/SPring-8, Hyogo-ken
  • M. K. Kitamura, H. Maesaka, Y. Otake, K. Shirasawa
    RIKEN Spring-8 Harima, Hyogo
  • T. Fukui
    RIKEN, Hyogo
 
  The X-ray FEL project at SPring-8 aims to build an X-ray lasing facility, which will generate brilliant coherent X-ray beams with wavelength of below 0.1nm. A combination of short-period in-vacuum undulators and an 8GeV high-gradient C-band linear accelerator makes the machine compact enough to fit into the SPring-8 1km-long beamline space. The machine commissioning will be started by March 2011. We designed the control system for the new machine based on the present SCSS test accelerator, which employs the MADOCA framework. The control system is based on the so-called “standard model” and composed of Linux-based operator consoles, database servers, Gigabit Ethernet, VMEbus system, and so on. The control system, also, has a synchronized data-taking scheme to achieve beam-based optics tuning. Most of the device control part is installed in water-cooled 19in. racks together with RF devices for temperature control, which guarantees stable RF phase control. This paper gives an overview of the project and describes the design of the control system. In addition, we briefly report the status of the SCSS test accelerator operated as a VUV-FEL user facility.  
slides icon Slides  
TPPA18 Application of a Virtualization Technology to VME Controllers 123
 
  • T. Fukui
    RIKEN Spring-8, Hyogo
  • T. Ohata, T. Masuda
    JASRI/SPring-8, Hyogo-ken
 
  The SPring-8 control framework MADOCA employs client-server architecture based on Sun RPC (Remote Procedure Call) for device control. An RPC server process named Equipment Manager (EM) is running on each VME controller operated by Solaris. It executes control commands from client applications one by one. As a simple approach to parallel (exactly concurrent) execution of the EM process, we apply the virtualization technology of Solaris Containers to VME controllers. Solaris Containers virtualizes operating system environment within the OS level. It consumes little disk space (~30 MB) to add a new virtual host. All the virtual hosts can access devices on the VME bus through a real host. We don’t need to modify the MADOCA framework and device drivers at all to run the EM process on the virtual host. Therefore, we can easily apply the virtualization technology to the VME controllers which don’t have enough disk space. The technology allows us not only to consolidate but also to logically partition the deployed VME controller. We will report some applications of Solaris Containers to the VME controllers, in particular from the viewpoint of the system performance and management.  
WPPA18 A Virtualization of Operator Consoles on Beamline Control System 353
 
  • T. Fukui
    RIKEN Spring-8, Hyogo
  • M. Ishii, M. K. Kodera, M. T. Takeuchi, T. Ohata
    JASRI/SPring-8, Hyogo-ken
 
  We introduced the virtualization technology to more than 50 workstations in SPring-8 beamlines to reduce into 8 servers. The virtualization technology is a hot topic for server computing. It enables to consolidate a lot of computers to a few host computers. We presented the experiment of introduction of the virtualization technology at previous ICALEPCS conference. In SPring-8, about 50 beamlines are in operation. Each beamline had one workstation for an operator console to avoid interference from other beamline operation. The virtualization technology reduces hardware and maintenance costs while ensuring independency of a computing environment in each beamline. This paper describes the process and the result of the migration to the virtualization environment. In addition, we show changes of a topological network configuration for the virtualization environment.  
WPPB13 Development of Flexible and Logic-Reconfigurable VME Boards 427
 
  • T. Kudo, T. Ohata, T. Hirono
    JASRI/SPring-8, Hyogo-ken
 
  We developed a logic-reconfigurable VME board with high flexibility. The board has two parts, a base board and two IO daughter boards. The base board has a field programmable gate arrays (FPGA) chip for execution of user logic, such as a digital low-pass filter or calculation of the median of a spot image. Users can install their logics into the FPGA via VME bus. The IO daughter boards are simple IO modules such as analog inputs/outputs (AIOs) or digital inputs/outputs (DIOs). The data from the IO board is sent to the base board and processed there. As the IO daughter board is separated physically, the user can customize the VME board by choosing daughter boards and does not need to develop whole device. We have developed DIO, AIO, and Camera Link interface as the IO daughter board. In the presentation, design concept and implementation of this VME board are shown with some applications.  
FOAA02 Timing and LLRF System of Japanese XFEL to Realize Femto-Second Stability 706
 
  • T. Fukui, N. Hosoda, H. Maesaka, T. Ohshima, T. Shintake
    RIKEN, Hyogo
  • K. Imai, M. Kourogi
    OPtical Comb, Inc., Yokohama
  • M. K. Kitamura, K. Tamasaku, Y. Otake
    RIKEN Spring-8 Harima, Hyogo
  • M. Musya
    University of electro-communications, Tokyo
  • T. Ohata
    JASRI/SPring-8, Hyogo-ken
 
  At SPring-8, the construction of a 5712-MHz linac and undulators as a light source for XFEL is in progress. There are two parts of the linac in accordance with requirements of phase accuracy to realize a stable SASE generation. One is a crest acceleration part using a sinusoidal wave. The other is an off-crest part that corresponds to a bunch compressor giving an energy chirp to a beam bunch. To generate the stable SASE, the beam energy stability of 10-4 is required. To obtain this stability, the accuracy of sub-picoseconds is required in the crest part, and several ten femto-seconds are necessary in the off-crest part. The requirement in the crest part was achieved by rf control instruments based on an electronic circuit in the SCSS prototype accelerator. However, realizing the several ten femto-seconds accuracy is almost impossible by the present electronic circuit technology. Therefore, for overcoming this fact, we employed laser technology. In this paper, we describe a system based on IQ control technology to obtain sub-picoseconds accuracy and an optical signal distribution system using an optical comb generator that could realize several ten femto-seconds accuracy.  
slides icon Slides