
APPLICATION OF A VIRTUALIZATION TECHNOLOGY TO VME
CONTROLLERS

T. Masuda#, T. Ohata, JASRI/SPring-8, Hyogo 679-5198, Japan
T. Fukui, RIKEN SPring-8 Joint-Project for XFEL, Hyogo 679-5148, Japan

Abstract
In the SPring-8 control framework MADOCA, a VME

controller employs a remote procedure call (RPC) server
process named equipment manager (EM) for device
control. EM executes control commands from client
applications one by one because it is a single-thread
process. As a rapid and simple but effective approach to
the concurrent execution of the EM processes, we apply
the virtualization technology Solaris Containers to VME
controllers. Solaris Containers consumes a small disk
space (~17 MB) for a new virtual host creation, and all its
virtual hosts can share and access VME I/O boards
because it virtualizes operating system environment
within the OS level. We do not need to modify any
software including the EM framework, device drivers and
client applications. The technology allows us not only to
consolidate but also to logically partition the deployed
VME controller. In the application to linac MCU control,
we have successfully obtained good results of the increase
in the throughput of control commands. This approach is
expected to be one of the solutions for the concurrent
execution of the EM process.

INTRODUCTION
The SPring-8 control framework MADOCA [1]

employs client-server architecture based on Sun remote
procedure call (RPC) for device control. An RPC server
process named equipment manager (EM) is running on
each VME controller operated by Solaris [2]. EM
executes equipment control commands from client
applications one by one because it is a single-thread
process. A control command taking a long time for I/O
completion in the EM process delays the next command
execution. Therefore, requests for the parallel (or
concurrent) execution of the EM process have increased
recently.

Making the EM process multithreading is a major and
popular approach. However, this is not an easy approach
for us because the EM framework and API libraries for
device access are not currently thread-safe.

Another approach is to run multiple EM processes on a
VME controller. In this case, we have to assign a different
RPC program number to each EM process because an
RPC client cannot distinguish multiply running RPC
servers with the same program number. It might be
slightly confusing for us to manage the EM processes
with many program numbers.

As a simple and effective approach to the concurrent
execution of the EM process, we apply the virtualization
technology Solaris Containers to VME controllers.

SOLARIS CONTAINERS
Solaris Containers is one of the virtualization

technologies proposed by Sun Microsystems, Inc. and has
been integrated into the Solaris 10 OS [3]. It virtualizes an
operating system environment within the OS level and
does not use virtual machine or hypervisor. Therefore, the
overhead of virtualization is very low. A virtual
environment called a non-global zone (or simply a zone)
is an environment completely isolated from other zones.
Each zone acts as a unique virtual host built on a single
machine. The zones can be managed and controlled
through a global zone, which is a default zone when
Solaris 10 is installed.

When we apply Solaris Containers to VME controllers,
it has to meet the following requirements:
• Each zone can run an EM process with the same

RPC program number simultaneously for parallel
(concurrent) equipment control.

• Each zone can share and access hardware devices
including VME I/O boards.

• The virtualization technology does not consume
large disk and memory space to create a new zone.

Concurrent EM Executions
We have confirmed concurrent EM executions on a

VME controller by using Solaris Containers. We prepared
Solaris 10-installed VME controller host0 and created two
non-global zones on it. They were named host1 and host2
as virtual hostnames. We simultaneously ran the same
EM program on both zones, and called the EM processes
from RPC clients, as shown in Fig. 1.

Figure 1: Example of concurrent execution of EM process.

These RPC clients succeeded in calling both EMs

concurrently. This means that multiple EM processes can
be run on a VME controller without changing the RPC
program number. We can identify a specific EM using the
virtual hostname of the zone, instead of the RPC program
number. The virtual hostname simplifies the identification
and management of the concurrently executed EM
processes. __

#masuda@spring8.or.jp

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA18

Software Technology

123

Sharing VME I/O Boards
We have determined that all zones can share and access

VME I/O boards. We prepared a Solaris 10-installed
VME controller equipped with a GP-IB board and created
the character device node /dev/gpib_0 in a global zone
after installing a device driver for the GP-IB board. The
driver was a Solaris driver typically used in a multi
process environment. We created two zones on the global
zone and added a device property to each zone to share
the GP-IB board. Consequently, both zones can possess a
/dev/gpib_0 node, which is actually a metadevice of
/dev/gpib_0 on the global zone. As shown in Fig. 2, we
simultaneously executed EM programs with GP-IB board
accesses through metadevices on both zones.

Figure 2: Sharing GP-IB board between two zones.

Both EMs successfully accessed the GP-IB board. Also,

mutex control to the device driver was available. Thus,
Solaris Containers allows us to share and access VME I/O
boards through the device driver. We have to consider
that sharing devices may violate the isolation between
zones. However, this feature of Solaris Containers is very
essential for applying the virtualization technology to
VME controllers.

Low Resource Consumption
Generally, VME computers for device control do not

have sufficient disk and memory space. Our VME CPU
boards are typically equipped with 1GB Compact Flash
and 256MB memory.

The installation of a new zone using a sparse root zone
can save disk space because it shares many directories
and files with a global zone. Our creation of a new zone
consumes about 17MB disk space, while our installation
of a global zone occupies about 420MB. Thus, the disk
consumption of the new zone is small.

On the other hand, running a new zone consumes about
25MB memory space. This space is not markedly large;
however, it cannot be ignored for the VME CPU board
with 256MB memory. The VME controller that runs
multiple zones should be equipped with at least 512MB
memory.

APPLICATION TO VME CONTROLLERS
As its first applications, we have applied Solaris

Containers to separate VME controllers logically and to

consolidate PCs for network-based equipment control.
Both applications employ universal pseudo devices
(UPDs) widely used for network-based equipment in
SPring-8 [4]. As a matter of course, we can apply these
ideas to real devices, such as GP-IB boards and ADC
boards, instead of the UPDs.

Consolidation of PCs
We have independently deployed two PCs for the

control of a network-based DMM, Keithley 2701 [5]. One
PC named vacdiag6 was for temporary measurement
related to the vacuum status of an 8GeV storage ring, and
the other PC named mondiagdcct was for the diagnostics
of a beam current monitor of the storage ring. A set of a
UPD and a communication client (ComC) [4] for DMM
control was installed into each PC, and both the EM
process and the data acquisition process were run on it.

We have successfully consolidated these two PCs into
one by using Solaris Containers. Two non-global zones
named vacdiag6 and mondiagdcct were created on a
global zone, on which two UPDs were installed. The
dedicated metadevice of the UPD has been created, and
the dedicated ComC, EM process and data acquisition
process have been run on each virtual host.

In this consolidation, we do not need to change the EM
process, data acquisition program and client-side
applications. The consolidation does not affect the system
performance.

Logical Separation of VME Controllers
A network-connected pulse motor controller called a

motor control unit (MCU) has been installed in a 1GeV
linac [6]. Twenty MCUs have been deployed along with
the length of the linac and controlled by three VME CPU
boards named limcu01, limcu02 and limcu03. The CPU
boards have been equipped with a 1.1GHz PentiumM
CPU and 256MB memory. They controlled MCUs
through UPDs and ComCs. A set of a UPD and a ComC
was dedicated to an MCU. We installed five sets into
limcu01, eight sets into limcu02 and seven sets into
limcu03. Each VME ran one EM process and five data
acquisition processes.

This approach of understanding the entire system was
slightly confusing. For example, when trouble with data
acquisition related to a MCU occurred, we did not know
immediately which VME was in charge of the MCU.

Thus, we have changed the composition of the system
by using Solaris Containers. We have to increase memory
size to 512MB. Solaris Containers has allowed us to
logically separate the three VME controllers into twenty
virtual hosts. Each virtual host is in charge of an MCU.
We ran an EM process and a data acquisition process on
each zone, and twenty EM processes and twenty data
acquisition processes are running on the three VME
controllers. The logical separations into twenty zones
make the system comprehensible.

TPPA18 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Software Technology

124

PERFORMANCE
In the above-mentioned application of the linac MCU

control, the EM processes are concurrently running on the
VME controller. We measured the throughput of control
commands sent to limcu02.

The measurement environment is shown in Fig. 3.
Figure 3(a) shows the previous system. A single EM
process that manages eight MCUs is running on limcu02.
Figure 3(b) shows the current system on which eight
zones are created. An EM process is executed on each
zone, and eight EM processes are concurrently running on
limcu02. We prepared three client applications for
sending control commands continuously only to
limcum1_1 for 1024 times, only to limcum1_2 for 1000
times and only to limcum2 for 950 times. These client
applications take about 100ms to communicate with the
MCUs. We simultaneously executed these three client
applications on three different operator consoles and
measured the completion time.

(a)

(b)

Figures 3: Performance measurement environment of
linac MCU control system. Figures 3(a) and 3(b) show

the previous and current systems, respectively.

Table 1 shows the results of the performance

measurements in both the previous and current systems.
The concurrent execution based on Solaris Containers
successfully increases the total throughput of the current
system. The results indicate that the concurrent execution
can increase CPU utilization. This approach is expected to
be effective for increasing the efficiency of the VME
controllers when faster CPU or multicore CPU boards
will be used in the future.

Table 1(a) Completion time (sec) in the previous system

 client
1

client
2

client
3

CPU utilization

(idle/kernel/user)

solo 122 119 113 48/51/1 (%)

trio 353 351 226 48/51/1 (%)

Table 1(b) Completion time (sec) in the current system

 client
1

client
2

client
3

CPU utilization
(idle/kernel/user)

solo 122 119 113 48/51/1 (%)

trio 122 119 113 0/98/2 (%)

SUMMARY AND FUTURE PLANS
We have succeeded in the concurrent executions of the

EM processes on VME controllers by using Solaris
Containers. This is a rapid and simple but effective
approach because we do not need to change the EM
framework and RPC program number. Each virtual host
can share real devices including VME I/O boards. The
concurrency increases the control system throughput and
enhances VME CPU utilization.

We will apply the technology to partition a
consolidated VME controller into some logical hosts
related to equipment groups, such as magnet power
supplies, vacuum controllers and beam monitors. We will
be able to consolidate VME controllers but separate them
into some logical hosts.

We will test the resource management function of
Solaris Containers. This will allow us to allocate
hardware resources, such as CPUs and memory, to each
zone. We will also change the scheduling policy of each
zone.

In addition, we will examine Solaris Containers for
Linux Application [7]. We may use it for Linux-based
applications mainly to control network-connected devices.

REFERENCES
[1] R. Tanaka et al., “The first operation of control

system at the SPring-8 storage ring”, Proc. of
ICALEPCS'97, Beijing, China, 1997, p. 1.

[2] http://www.sun.com/software/solaris
[3] http://www.sun.com/software/solaris/virtualization.jsp
[4] M. Ishii et al., “A Software Framework to Control a

Network-Connected Equipment as a Pseudo Device”,
Proc. of ICALEPCS’03, Gyeongju, Korea, 2003, p.
512.

[5] http://www.keithley.com
[6] T. Masuda et al., “Upgrade of the SPring-8 Linac

Control by Re-engineering the VME Systems for
Maximizing Availability”, Proc. of ICALEPCS’03,
Gyeongju, Korea, 2003, p. 295.

[7] http://sun.com/solaris/scla.jp

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPA18

Software Technology

125

