A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Akiyama, A.

Paper Title Page
TOAB02 Current Status of the Control System for J-PARC Accelerator Complex 62
 
  • M. Adachi, S. F. Fukuta, S. H. Hatakeyama, M. T. Tanaka
    MELCO SC, Tsukuba
  • A. Akiyama, N. Kamikubota, T. Katoh, K. Kudo, T. Matsumoto, H. Nakagawa, J.-I. Odagiri, Y. Takeuchi, N. Yamamoto
    KEK, Ibaraki
  • H. Ikeda, T. Suzuki, N. T. Tsuchiya
    JAEA, Ibaraki-ken
  • Y. I. Itoh, Y. Kato, M. Kawase, H. Sakaki, H. Sako, G. B. Shen, H. Takahashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Motohashi, M. Takagi, S. Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki
  • S. S. Sawa
    Total Support Systems Corporation, Tokai-mura, Naka-gun, Ibaraki
  • M. S. Sugimoto
    Mitsubishi Electric Control Software Corp, Kobe
  • H. Yoshikawa
    KEK/JAEA, Ibaraki-Ken
 
  J-PARC accelerator complex consists of a proton linac (LINAC), > a Rapid Cycle Synchrotron (RCS), and a Main Ring synchrotron (MR). The commissioning of LINAC already started in November 2006, while the commissioning of Main Ring synchrotron (MR) is scheduled in May 2008. Most of the machine components of MR have been installed in the tunnel. Introduction of electronic modules and wiring will be made by the end of 2007. For the control of MR, the J-PARC accelerator control network was extended to include the MR related parts in March 2007. IOC computers (VME-bus computers) for MR will be introduced in 2007. In addition, more server computers for application development will be also introduced in 2007. This paper reports the status of development for the J-PARC MR control system.  
slides icon Slides  
TOPB04 Control System of the KEKB Accelerator Complex 268
 
  • A. Akiyama, N. Kamikubota, T. T. Nakamura, J.-I. Odagiri, M. Satoh, T. Suwada, N. Yamamoto, K. Furukawa
    KEK, Ibaraki
 
  The KEKB asymmetric electron-positron collider complex consists of 8-GeV Linac, high-energy and low-energy rings. Some of the resources were inherited from the previous TRISTAN project, and also they are shared with Photon Factory and PF-AR light sources. In order to realize the long lifespan of the system de-facto and international standard technologies were employed since the early stage, which have been efficiently operated. Several gateway methods were implemented to integrate heterogeneous sub-systems, which are gradually converted into EPICS. Scripting languages are employed for higher-level applications. The ever-evolving control system has enabled flexible and reliable beam operations at KEKB throughout the long period.  
slides icon Slides