Keyword: damping
Paper Title Other Keywords Page
MOP031 A Study Into the Long-Term Stability of Front End X-Ray Beam Position Monitor Support Columns at Diamond Light Source laser, experiment, resonance, ground-motion 90
 
  • C.E. Houghton, C. Bloomer, L. Bobb, D. Crivelli, J.E. Melton, H. Patel
    DLS, Harwell, United Kingdom
 
  Sand-filled steel columns are used at Diamond Light Source to support front end X-ray beam position monitors. This approach is chosen due to the relatively large thermal mass of the sand being considered useful to reduce the rate at which expansion and contraction of the column occurred as the storage ring tunnel temperature varied, particularly during machine start-up. With the higher requirements for mechanical stability for the upcoming Diamond-II upgrade, there is now a need to assess and quantify the current system’s impact on X-ray beam movement. A study of thermal and mechanical stability has been carried out to quantify the stability performance of the front end X-ray beam position monitor’s columns and the impact that column motion may have on the X-ray beam position measurement. Measurements have been made over a range of different timescales, from 250 Hz up to 2 weeks. The measured stability of the support column is presented, showing that it meets our Diamond-II stability requirements. A comparison of the stability of the column with and without a sand filling is presented.  
poster icon Poster MOP031 [0.594 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP031  
About • Received ※ 06 September 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 17 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP018 Simulation of Oscillating Arm Wire Monitor Mechanics Driven by a Stepper Motor simulation, acceleration, proton, HOM 373
 
  • R. Dölling
    PSI, Villigen PSI, Switzerland
 
  The present oscillating arm wire monitors at HIPA operate with wire speeds of 0.75 m/s. Based on basic dynamic simulations of mechanics and motor, we discuss possible variants of this design using stepper motors in open loop control. The results suggest that 4 m/s can be reached with sufficient position resolution, when using a predefined step sequence customized to the mechanics. This speed should be sufficient to measure the full proton beam current in the injection line.  
poster icon Poster WEP018 [3.110 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP018  
About • Received ※ 06 September 2023 — Accepted ※ 10 September 2023 — Issue date ※ 01 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)