Author: Dooling, J.C.
Paper Title Page
TUP027 Microbunching of Thermionic Cathode RF Gun Beams in the Advanced Photon Source S-Band Linac 240
 
  • J.C. Dooling, A.R. Brill, N. Kuklev, I. Lobach, A.H. Lumpkin, N. Sereno, Y. Sun
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. D.O.E.,Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02- 06CH11357.
We report on measurements of beams from thermionic cathode (TC) rf guns in the Advanced Photon Source S-Band Linac. These measurements include the macropulse out of both new and existing TC guns as well as the observation of microbunching within the micropulses of these beams. A gun chopper limits the macropulse FWHM duration to the 10-ns range. Our objectives were to analyse the new TC gun and investigate microbunching within a TC-rf-gun-generated beam. Our diagnostics elucidated longitudinal beam structures from the ns to the fs time scales. Coherent transition radiation (CTR) interferometers responding to far-infrared wavelengths were employed after each compression stage to provide the autocorrelations of the sub-ps micropulse durations. The first compression stage is an alpha magnet and the second a chicane. A CCD camera was used to image the beam via optical transition radiation from an Al screen at the end of the linac and also employed to measure coherent optical transition radiation (COTR) in the visible range. The COTR diagnostic observations, implying microbunching on a fs time scale, are presented and compared with a longitudinal space-charge impedance model.
 
poster icon Poster TUP027 [3.649 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP027  
About • Received ※ 15 July 2023 — Revised ※ 08 September 2023 — Accepted ※ 12 September 2023 — Issue date ※ 23 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP028 Collimator Irradiation Studies at the Advanced Photon Source 245
 
  • J.C. Dooling, W. Berg, M. Borland, J.R. Calvey, L. Emery, A.M. Grannan, K.C. Harkay, Y. Lee, R.R. Lindberg, G. Navrotski, V. Sajaev, N. Sereno, J.B. Stevens, Y.P. Sun, K.P. Wootton
    ANL, Lemont, Illinois, USA
  • N.M. Cook
    RadiaSoft LLC, Boulder, Colorado, USA
  • D.W. Lee, S.M. Riedel
    UCSC, Santa Cruz, California, USA
 
  Funding: Work supported by the U.S. D.O.E.,Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02- 06CH11357.
We present results from a recent collimator irradiation experiment conducted in the Advanced Photon Source (APS) storage ring. This experiment is the third in a series of studies to examine the effects of high-intensity electron beams on potential collimator material for the APS-Upgrade (APS-U). The intent here is to determine if a fan-out kicker can sufficiently reduce e-beam power density to protect horizontal collimators planned for the APS-U storage-ring. The fan-out kicker (FOK) spreads the bunched-beam vertically allowing it to grow in transverse dimensions prior to striking the collimator. In the present experiment, one of the two collimator test pieces is fabricated from oxygen-free copper; the other from 6061-T6 aluminum. As in past studies, diagnostics include turn-by-turn BPMs, a diagnostic image system, fast beam loss monitors, a pin-hole camera, and a current monitor. Post-irradiation analyses employ microscopy and metallurgy. To avoid confusion from multiple strikes, only three beam aborts are carried out on each of the collimator pieces; two with the FOK on and the other with it off. Observed hydrodynamic behavior will be compared with coupled codes.
 
poster icon Poster TUP028 [3.733 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP028  
About • Received ※ 07 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 25 September 2023 — Issue date ※ 29 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP015 Synchrotron Light Monitor for the Advanced Photon Source Booster Synchrotron 358
 
  • K.P. Wootton, W. Berg, W.P. Burns III, J.R. Calvey, J.C. Dooling, L. Erwin, A.H. Lumpkin, N. Sereno, S.E. Shoaf, S.G. Wang
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
A new synchrotron light monitor has been tested for the booster synchrotron of the Advanced Photon Source. Visible light synchrotron radiation is collected by a mirror on a path tangential to the electron beam orbit, and directed to an optical imaging system and camera. This is planned to be a non-intercepting, transverse beam-size monitor even with the higher stored beam charges (~17 nC) needed for the Advanced Photon Source Upgrade. In the present work, we describe the present synchrotron radiation diagnostic layout. An analysis of the synchrotron radiation power on the mirror, the optical layout with components, and features of the control system will be presented.
 
poster icon Poster WEP015 [1.148 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP015  
About • Received ※ 09 August 2023 — Revised ※ 08 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 02 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP017 Electron Beam at the Advanced Photon Source Linac Extension Area Beamline 368
 
  • K.P. Wootton, W. Berg, M. Borland, A.R. Brill, J.M. Byrd, S. Chitra, J.T. Collins, J.C. Dooling, J.N. Edwards, L. Erwin, G.I. Fystro, T. Grabinski, M.J. Henry, E.E. Heyeck, J.E. Hoyt, R.T. Keane, S.H. Lee, J. Lenner, I. Lobach, A.H. Lumpkin, A. Puttkammer, V. Sajaev, N. Sereno, Y. Sun, J. Wang, S.G. Wang, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: This research used resources of the Advanced Photon Source, operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
The Linac Extension Area has been developed into a beamline area for testing accelerator components and techniques. Beginning commissioning activities in February 2023, we have delivered the first electron beam to the Linac Extension Area at the Advanced Photon Source at 425 MeV. In the present work, we outline the stages of re-commissioning the electron beamline. We summarise measurements of the electron beam transport through the accelerator. We outline scenarios used to verify the adequacy of radiation shielding of the beamline, and measured shielding performance.
 
poster icon Poster WEP017 [1.140 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP017  
About • Received ※ 10 August 2023 — Revised ※ 08 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 30 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)