Keyword: quadrupole
Paper Title Other Keywords Page
MOP14 The PS Booster Alignment Campaign and a New Tune Control Implementation After the LHC Injectors Upgrade at CERN controls, alignment, focusing, injection 89
 
  • F. Antoniou, F. Asvesta, H. Bartosik, J.F. Comblin, G.P. Di Giovanni, M. Hostettler, A. Huschauer, B. Mikulec, J.-M. Nonglaton, T. Prebibaj
    CERN, Meyrin, Switzerland
 
  The CERN PS Booster (PSB) has gone through major upgrades during the Long Shutdown 2 (LS2) and the recommissioning with beam started in December 2020. Two of the aspects leading to improved operation will be described in this paper: a new tune control implementation; and a full re-alignment campaign. The operation of the PSB requires a large range of working points to be accessible along the acceleration cycle. As part of the LIU project, the PSB main power supply was upgraded to raise the extraction energy from 1.4 GeV to 2 GeV, in order to improve the brightness reach of the downstream machines. A new tune control implementation was necessary to take into account saturation effects of the bending magnets and the reconfiguration of the main circuits, as well as the additional complexity of the new H charge exchange injection. The first part of the paper describes the implementation of the new tune control and its experimental verification and optimization. The second part describes the results of the PSB alignment campaign after LS2, giving emphasis to the method developed to perform a combined closed orbit correction through quadrupole alignments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2021-MOP14  
About • Received ※ 18 October 2021 — Revised ※ 19 November 2021 — Accepted ※ 25 March 2022 — Issue date ※ 11 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP20 Space Charge Resonance Analysis at the Integer Tune for the CERN PS resonance, space-charge, simulation, optics 124
 
  • F. Schmidt, F. Asvesta
    CERN, Meyrin, Switzerland
 
  In the context of the LHC Injectors Upgrade (LIU) project, a series of studies have been performed in order to better understand the beam brightness limitations imposed by resonances and space charge effects. Space charge simulations using the analytic (frozen) space charge solver as implemented in the MAD-X code conducted for the CERN Proton Synchrotron (PS) show that a particle approaching the integer tune of Qx = 6 demonstrates a resonant behavior. The analysis of the single particle transverse motion reveals the excitation of a second order resonance. The interplay of the space charge effect and the optics perturbation in the regime of the integer tune on this excitation was further investigated. The simulations were complemented with the analysis of the resonance driving terms coming from the space charge potential derived in a classical perturbative approach.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster MOP20 [5.934 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2021-MOP20  
About • Received ※ 05 October 2021 — Revised ※ 20 October 2021 — Accepted ※ 24 December 2021 — Issue date ※ 12 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAC3 Exploring Quasi-Integrable Optics with the IBEX Paul Trap lattice, octupole, experiment, optics 214
 
  • J.A.D. Flowerdew
    University of Oxford, Oxford, United Kingdom
  • D.J. Kelliher, S. Machida, S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  An ideal accelerator built from linear components will exhibit bounded and stable particle motion. However, in reality, any imperfections in the magnetic field strength or slight misalignments of components can introduce chaotic and unstable particle motion. All accelerators are prone to these non-linearities but the effects are amplified when studying high intensity particle beams with the presence of space charge effects. This work aims to explore the non-linearities which arise in high intensity particle beams using a scaled experiment called IBEX. The IBEX experiment is a linear Paul trap which allows the transverse dynamics of a collection of trapped particles to be studied. It does this by mimicking the propagation through multiple quadrupole lattice periods whilst remaining stationary in the laboratory frame. IBEX is currently undergoing a nonlinear upgrade with the goal of investigating Quasi-Integrable Optics (QIO), a form of Nonlinear Integrable Optics (NIO), in order to improve our understanding and utilisation of high intensity particle beams.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2021-THAC3  
About • Received ※ 08 October 2021 — Revised ※ 16 October 2021 — Accepted ※ 22 November 2021 — Issue date ※ 23 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)