Keyword: detector
Paper Title Other Keywords Page
MOP01 Improvement of Capture Ratio for an X-Band Linac Based on Multi-Objective Genetic Algorithm electron, cavity, linac, impedance 18
 
  • J.Y. Li, T. Hu, J. Yang, B.Q. Zeng
    HUST, Wuhan, People’s Republic of China
  • H.G. Xu
    SINR, Jiading, Shanghai, People’s Republic of China
 
  Funding: This work was supported by National Natural Science Foundation of China (NSFC) under Project Numbers 11905074.
Electron linear accelerators with an energy of ~MeV are widely required in industrial applications. Whereas miniaturized accelerators, especially those working at X-band, attract more and more attention due to their compact structures and high gradients. Since the performance of a traveling wave (TW) accelerator is determined by its structures, considerable efforts must be made for structure optimization involving numerous and complex parameters. In this context, functional key parameters are obtained through deep analysis for structure and particle motion characteristics of the TW accelerator, then a multi-objective genetic algorithm (MOGA) is successfully applied to acquire an optimized phase velocity distribution which can contribute to achieving a high capture ratio and a low energy spread. Finally, a low-energy X-band TW tube used for rubber vulcanization is taken as an example to verify the reliability of the algorithm under a single-particle model. The capture ratio is 91.2%, while the energy spread is 5.19%, and the average energy is 3.1MeV.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster MOP01 [1.124 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2021-MOP01  
About • Received ※ 04 October 2021 — Revised ※ 18 October 2021 — Accepted ※ 18 December 2021 — Issue date ※ 03 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP26 Status of Layout Studies for Fixed-Target Experiments in Alice Based on Crystal-Assisted Halo Splitting target, proton, collimation, experiment 146
 
  • M. Patecki, D. Kikoła
    Warsaw University of Technology, Warsaw, Poland
  • A.S. Fomin, D. Mirarchi, S. Redaelli
    CERN, Geneva, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme.
The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) is the world largest and most powerful particle accelerator colliding beams of protons and lead ions at energies up to 7 TeV and 2.76 TeV, respectively. ALICE is one of the detector experiments optimised for heavy-ion collisions. A fixed-target experiment in ALICE is considered to collide a portion of the beam halo split by means of a bent crystal with an internal target placed a few meters upstream of the detector. Fixed-target collisions offer many physics opportunities related to hadronic matter and the quark-gluon plasma to extend the research potential of the CERN accelerator complex. This paper summarises our progress in preparing the fixed-target layout consisting of crystal assemblies, a target and downstream absorbers. We discuss the conceptual integration of these elements within the LHC ring, impact on ring losses, conditions for a parasitic operation and expected performance in terms of particle flux on target.
 
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster MOP26 [0.453 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2021-MOP26  
About • Received ※ 30 September 2021 — Revised ※ 18 October 2021 — Accepted ※ 02 November 2021 — Issue date ※ 24 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)