JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for MOP01: Improvement of Capture Ratio for an X-Band Linac Based on Multi-Objective Genetic Algorithm

TY  - CONF
AU  - Li, J.Y.
AU  - Hu, T.
AU  - Xu, H.G.
AU  - Yang, J.
AU  - Zeng, B.Q.
ED  - Gianfelice, Eliana
ED  - Nagaitsev, Sergei
ED  - Kim, Dong Eon
ED  - Marx, Michaela
ED  - Schaa, Volker R. W.
TI  - Improvement of Capture Ratio for an X-Band Linac Based on Multi-Objective Genetic Algorithm
J2  - Proc. of HB2021, Batavia, IL, USA, 04-08 October 2021
CY  - Batavia, IL, USA
T2  - ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams
T3  - 64
LA  - english
AB  - Electron linear accelerators with an energy of ~MeV are widely required in industrial applications. Whereas miniaturized accelerators, especially those working at X-band, attract more and more attention due to their compact structures and high gradients. Since the performance of a traveling wave (TW) accelerator is determined by its structures, considerable efforts must be made for structure optimization involving numerous and complex parameters. In this context, functional key parameters are obtained through deep analysis for structure and particle motion characteristics of the TW accelerator, then a multi-objective genetic algorithm (MOGA) is successfully applied to acquire an optimized phase velocity distribution which can contribute to achieving a high capture ratio and a low energy spread. Finally, a low-energy X-band TW tube used for rubber vulcanization is taken as an example to verify the reliability of the algorithm under a single-particle model. The capture ratio is 91.2\%, while the energy spread is 5.19\%, and the average energy is 3.1MeV.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 18
EP  - 22
KW  - electron
KW  - cavity
KW  - linac
KW  - impedance
KW  - detector
DA  - 2024/03
PY  - 2024
SN  - 2673-5571
SN  - 978-3-95450-225-7
DO  - doi:10.18429/JACoW-HB2021-MOP01
UR  - https://jacow.org/hb2021/papers/mop01.pdf
ER  -