Keyword: damping
Paper Title Other Keywords Page
MOP2WA01 Beam Physics Limitations for Damping of Instabilities in Circular Accelerators betatron, pick-up, emittance, kicker 26
 
  • V.A. Lebedev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by D.O.E. Contract No. DE-AC02-07CH11359
The paper considers a beam interaction with a feedback system and major limitations on the beam damping rate. In particular, it discusses: limitations on the system gain and damping rate, feedback system noise and its effect on the beam emittance growth, x-y coupling effect on damping, suppression of high order modes and damping of slip-stacked beams.
 
slides icon Slides MOP2WA01 [0.408 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-MOP2WA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP2WA03 Experiments and Theory on Beam Stabilization with Second-Order Chromaticity impedance, experiment, betatron, simulation 32
 
  • M. Schenk, X. Buffat, L.R. Carver, K.S.B. Li, E. Métral
    CERN, Geneva, Switzerland
  • A. Maillard
    ENS, Paris, France
 
  This study reports on an alternative method to generate transverse Landau damping to suppress coherent instabilities in circular accelerators. The incoherent betatron tune spread can be produced through detuning with longitudinal rather than transverse action. This approach is motivated by the high-brightness, low transverse emittance beams in future colliders where detuning with transverse amplitude will be less effective. Detuning with longitudinal action can be introduced with a radio frequency (rf) quadrupole, or similarly, using second-order chromaticity. The latter was enhanced in the Large Hadron Collider (LHC) at CERN and experimental results on single-bunch stabilization are briefly recapped. The observations are interpreted analytically by extending the Vlasov formalism to include nonlinear chromaticity. Finally, the newly developed theory is benchmarked against circulant matrix and particle tracking models.  
slides icon Slides MOP2WA03 [3.374 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-MOP2WA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)