Author: Shishlo, A.P.
Paper Title Page
MOP1WB02 Understanding the Source and Impact of Errant Beam Loss in the Spallation Neutron Source (SNS) Super Conducting Linac (SCL) 48
 
  • C.C. Peters, D. Curry, G.D. Johns, T.B. Southern
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.V. Aleksandrov, W. Blokland, B. Han, T.A. Justice, S.-H. Kim, M.A. Plum, A.P. Shishlo, M.P. Stockli, J.Y. Tang, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05- 00OR22725 for the U.S. Department of Energy.
The Spallation Neutron Source (SNS) Linear Accelerator (Linac) delivers a high power proton beam (>1 MW) for neutron production with high neutron availability (>90%). For beam acceleration, the Linac has both normal and super conducting RF sections, with the Super Conducting Linac (SCL) portion providing the majority of beam acceleration (81 of 96 RF cavities are super conducting). Operationally, the goal is to achieve the highest possible beam energy by maximizing SCL cavity RF gradients, but not at the expense of cavity reliability. One mechanism that has negatively impacted both SCL cavity RF gradients and reliability is beam lost into the SCL due to malfunctions of upstream components. Understanding the sources and impacts of errant beam on SCL cavity performance will be discussed.
 
slides icon Slides MOP1WB02 [19.080 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-MOP1WB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA1PL01 What is Missing for the Design and Operation of High-Power Linacs? 195
 
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
The design process, tuning, and operation of high-power linacs are discussed. The inconsistencies between the basic beam physics principles used in the design and the operation practices are considered. The missing components of the beam physics tools for the design and operations are examined, especially for negative hydrogen ions linacs. The diagnostics and online models necessary for tuning and characterization of existing states of the linac are discussed.
 
slides icon Slides WEA1PL01 [3.294 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA1PL01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WD02
SNS Operation and Upgrade Plans  
 
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
The future power upgrade and operation parameters of the Spallation Neutron Source at Oak Ridge National Laboratory are discussed. The installation of seven additional superconducting cavities in the existing free space of the linear accelerator will increase the beam energy to 1.3 GeV. More than 95% of the installed ring and transport systems are presently capable of 1.3 GeV operation. Combination of the new beam energy and increasing the average beam current by ~50% will double the accelerator power capability to 2.8 MW. The Mercury spallation neutron target will be upgraded to a capacity of 2.0 MW beam power.
 
slides icon Slides THA1WD02 [4.211 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)