What is missing for the Design and Operation of High-Power Linacs?

Andrei Shishlo

SNS Project, Oak Ridge National Lab Warm Linac Physicist June 20, 2018

Presented at the HB2018, Daejeon, Korea, June 18 - 22, 2018

ORNL is managed by UT-Battelle for the US Department of Energy

Outline

- What is Missing in Design:
 - Tuning/Retuning: Diagnostics + Algorithms
 - Parameter Tolerances: Realistic Approach + Model
- What is Missing in Operations:
 - Model based Beam Loss Control
 - Initial Distributions
 - Real Life PIC Codes Benchmark
 - Model-Based Tuning using PIC codes

Summary

Hadron Linac Design/Operations

SNS Linac : 1.4 MW H⁻ Linac

Pulsed Linac Macro Pulse Frequency: 60 Hz Macro-Pulse: about 1 ms Chopped beam: yes Number of Mini-Pulses in Macro: about 1000 Peak Current: 38 mA

Overall: great design. Linac is working even in presence of unanticipated Intra-Beam Stripping beam loss for H⁻

- Initial Tuning Algorithm
 - 100 us beam
 - 360^o RF Phase scans with "Time of flight" method by using two BPMs
 - All downstream RF are "Off"
 - Cavities done one by one, bringing them to "On Resonance" state

Problem: (81 cavity) x (10-15 minutes) = about 2 shifts if everything is Ok

- Today's Tuning Algorithm
 - "Time of flight" with all BPMs
 - 360^o RF phase scan
 - All downstream RF are "On", but in "RF Blanked" State
 - Use just a few mini-pulses (few us) of beam
 - Beam 80/90% attenuation in the MEBT to avoid beam loading: new hardware in MEBT
 - Process automated: 40 min

FRIB has 330 cavities ESS has 200

National Laboratory

Warm Linac RF Tuning: DTL, CCL

RF Reference Line

-200

-100

Cav Phase, [deg]

DTL1 tank does not have BPM inside!

100

CCL Orbit Correction

- CCL has 10 BPMs and 48 quads: cannot correct orbit using only BPMs
- The number of BPMs was reduced: a budget optimization
- Can use quad gradients scan, but it too time consuming for operations

Solution: Created a model with BPMs' and quads' transverse offsets and specialized CCL orbit correction app

Optimal Tolerance Design Problem

- Tolerance of parameters influence the cost and feasibility
- The goal is a cost minimization with acceptable beam loss

RF Tolerances: Static and Dynamic Errors

From SNS experience: RF related static errors tolerance should be much larger then 1%,1°.

It is model independent!

BPM #	Pos. [mm]	φ, deg
1	887	163.5
2	1653	171.7

Phase difference = 8⁰

Both settings are good as a starting point for loss tuning!

RF System Static Errors Treatment

- We have to be careful applying static RF errors to the models
- It should be like the transverse alignment errors: apply errors, and then apply orbit correction. The result will be low beam loss.
- For RF we can use the simulation of a real life tuning procedure.

Example

IMPROVEMENT OF THE RF FIELD PHASE & AMPLITUDE ERRORS SIMULATION IN TRACEWIN CODE

D. Uriot †, Ifru, CEA, Université de Paris-Saclay, F-91191 Gif-sur-Yvette, France

Proceedings of IPAC2018, Vancouver, BC, Canada

- In the TraceWin code the RF tuning command was implemented.
- The new command simulates "time of flight" measurements with two BPMs
- The "usual simulation (errors 1%,1°)" gave 0.159 W beam loss in MYRRHA linac
- The use of the new tuning command reduced loss by factor 60 for "a huge error on the BPM position (1mm)" and +- 20% RF field errors.

RF System: Dynamic Errors Level (SNS)

Snapshots from Control Room

RF Amplitude Error 1-2%

NEUTRON

SOURCE

National Laboratory

SNS Linac Cavity Index

Problem: Tolerance Simulations are not benchmarked with Real Beam Loss Data

- We can estimate losses from scattering / ionization / stripping on residual gas in the beam pipe
- We can estimate Intra Beam Stripping beam loss for H⁻ linacs
- But it is very difficult to predict beam loss from beam halo
- The PIC codes are not benchmarked with real beam loss
- This cast a shadow of doubt on the tolerances estimation procedure

Operations: Model Based Beam Loss Tuning

- Linac Control Room Tuning includes
 - RF tuning: usually model based
 - Transverse matching: usually model based
 - Final beam loss tuning: always empirical
- Only PIC codes capable of beam loss prediction
- We do not use PIC codes in the control room:
 - It is difficult
 - There is no point they do not work anyway

We need a PIC code benchmarked against beam halo formation and beam loss prediction

PIC Model = Initial distribution + Model Itself

SNS Beam Test Facility (BTF) is close replica of SNS Front End **BTF Parameters**

- Built to commission RFQ
- Now a primary station for equipment development and beam dynamics R&D

Species: H⁻ or p Energy: 2.5 MeV Beam current: < 50 mA R&D duty factor: 10 Hz at 50 µS

National Laboratory

Courtesy of A. Aleksandrov & B. Cathey, IPAC2018: TUPAL044, THXGBE001

6D Phase Space Measurement Principle

National Laboratory

SNS BTF: High Intensity Beam Dynamics Experiment

- Experimental investigation of halo formation in high intensity beam and computer simulation benchmarking
 - Develop Six-dimensional (6D) particles distribution measurement system (Done)
 - Build a test FODO line (Done, not installed yet)
 - Develop reliable halo measurement system

(Courtesy of A. Aleksandrov)

PIC Codes: Bunch Backtracking is needed

- 6D is coming, but right now we have transverse emittance stations, wire scanners, Bunch Shape Monitors etc.
- From 2D phase space emittance station measurements we can generate 2Dx2D particle distributions, but longitudinal measurements could be upstream
- To perform the benchmark we need an ability to track bunch backwards along the linac lattice
- We can do it: all our equations of motion are time reversable

Summary

- In design we are missing
 - more attention to hardware and algorithms for tuning
 - verified PIC model for beam loss calculations during tolerances estimation
- For operations we are missing
 - Verified PIC codes for interactive beam loss tuning
 - Knowledge about initial particles distribution
 - Backtracking feature in codes would be nice

Thanks for your attention!

Thanks for useful discussion to A. Aleksandrov (SNS, Oak Ridge), P. Ostroumov (FRIB, East Lansing), B. Mustapha (ANL, Argonne)

Backup slides

