Author: Oeftiger, A.
Paper Title Page
WEP2PO006 Overview of the CERN PSB-to-PS Transfer Line Optics Matching Studies in View of the LHC Injectors Upgrade Project 272
 
  • V. Forte, S.C.P. Albright, W. Bartmann, G.P. Di Giovanni, M.A. Fraser, C. Heßler, A. Huschauer, A. Oeftiger
    CERN, Geneva, Switzerland
 
  At injection into the CERN Proton Synchrotron (PS) a significant horizontal emittance blow-up of the present high brightness beams for the LHC is observed. A partial contribution to this effect is suspected to be an important mismatch between the dispersion function in the transfer line from the PS Booster (PSB) and the ring itself. This mismatch will be unacceptable in view of the beam parameters requested by the LHC Injectors Upgrade (LIU) project with high longitudinal emittance and momentum spread. To deliver the requested beam parameters the PSB-to-PS transfer line will be upgraded and the optics in the line changed to improve the matching from all the four PSB rings. A re-matching campaign from the PSB ring 3 has been carried out to evaluate the impact of the present optics mismatch as a source of emittance growth both in simulations and measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WE02 Requirements and Results for Quadrupole Mode Measurements 393
 
  • A. Oeftiger
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the HL-LHC project.
Direct space charge may be quantified, and hence the beam brightness observed, by measuring the quadrupolar beam modes in the CERN Proton Synchrotron (PS). The spectrum of the transverse beam size oscillations (i.e. the quadrupolar beam moment) contains valuable information: the betatron envelope modes and the coherent dispersive mode indicate optics mismatch, while their frequency shifts due to space charge allow a direct measurement thereof. To measure the quadrupolar beam moment we use the Base-Band Q-meter system of the PS which is based on a four electrode stripline pick-up. Past experiments with quadrupolar pick-ups often investigated coasting beams, where the coherent betatron and dispersion modes correspond to single peaks in the tune spectrum. In contrast, long bunched beams feature bands of betatron modes: the mode frequencies shift depending on the transverse space charge strength which varies with the local line charge density. By using the new transverse feedback in the PS as a quadrupolar RF exciter, we measured the quadrupolar beam transfer function. The beam response reveals the distinct band structure of the envelope modes as well as the coherent dispersive mode.
 
slides icon Slides THA1WE02 [7.315 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WE02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)