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Abstract
Direct space chargemay be quantified, and hence the beam

brightness observed, by measuring the quadrupolar beam

modes in the CERN Proton Synchrotron (PS). The spectrum

of the transverse beam size oscillations (i.e. the quadrupolar

beam moment) contains valuable information: the betatron

envelope modes and the coherent dispersive mode indicate

optics mismatch, while their frequency shifts due to space

charge allow a direct measurement thereof. To measure the

quadrupolar beam moment we use the Base-Band Q-meter

system of the PS which is based on a four electrode stripline

pick-up. Past experiments with quadrupolar pick-ups often

investigated coasting beams, where the coherent betatron

and dispersion modes correspond to single peaks in the tune

spectrum. In contrast, long bunched beams feature bands

of betatron modes: the mode frequencies shift depending

on the transverse space charge strength which varies with

the local line charge density. By using the new transverse

feedback (TFB) in the PS as a quadrupolar RF exciter, we

measured the quadrupolar beam transfer function. The beam

response reveals the distinct band structure of the envelope

modes as well as the coherent dispersive mode.

INTRODUCTION
The transverse second-order moments of a beam distribu-

tion can be measured with the aid of sensitive quadrupolar

pick-ups (QPU) featuring four electrodes in quadrupolar con-

figuration. In particular under stable beam conditions, the

oscillations about the matched beam values can give insight

on transverse emittances, optics mismatch, and space charge

strength. Our measurements with the QPU at the CERN Pro-

ton Synchrotron aim to characterise the new high brightness

beams in the context of the LHC Injector Upgrade [1]. The

goal is to establish a direct experimental method to assess

space charge strength, which can also be used to benchmark

advanced numerical simulation set-ups.

In the past, QPU studies have been conducted both in the

time domain (fitting the quadrupole moment for emittance

measurements, cf. [2, 3]) and more often in the frequency

domain. The frequency domain is advantageous in the sense

that the oscillatory or differential signal content is much

less noise affected than the absolute signal values. Beam

frequency response measurements have been used e.g. for

emittance measurements [4], while space charge studies

cover the majority of QPU studies [5–8].

The CERN PS provides good experimental conditions

to establish the method enabling us to study various space

charge strengths and tune coupling conditions. The present

hardware includes the new transverse feedback systemwhich
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we exploit to measure the quadrupolar beam transfer function

in order to characterise the quadrupolar eigenmodes. The

planned upgrades of the BBQ systems in the PS Booster and

the Super Proton Synchrotron will extend the availability of

quadrupolar moment measurements to these machines.

This paper first reviews the theoretical basics yielding the

expressions for modes of quadrupolar order. We employ the

smooth approximation where not explicitly stated otherwise,

i.e. the lattice functions remain constant along the ring. A

more comprehensive overview of most of the derivations

and arguments is given in Ref. [9, chapter 2]. The next

section describes the experimental set-up for the quadrupolar

beam transfer function measurement in the CERN PS and

presents the measured beam frequency response. Eventually,

these results are briefly compared to numerical simulations

carried out with PyHEADTAIL [10] using a self-consistent

3D space charge model [11].

THEORETICAL CONSIDERATIONS
Let ζ � (x, y, z, x ′, y′, δ) denote the vector of the six phase

space coordinates of the beam particles. The spatial coor-

dinates x and y measure the horizontal and vertical dis-

placement from the orbit, while z indicates the longitudinal
spatial displacement from the RF wave’s zero crossing. The

canonical momenta px, py, pz are embedded in x ′ � px/p0,
y′ � py/p0 and δ = (pz − p0)/p0 while the beam momen-

tum p0 = βγmpc is considered constant, denoting with β
the beam speed in units of speed of light c, with γ the rel-
ativistic Lorentz factor of the beam and with mp the mass

per particle.

It is well known that in a coasting beam with a transverse

uniform Kapchinskij-Vladimirskij (KV) distribution [12],

the particles oscillate at one single incoherent tune. The

defocusing nature of transverse space charge translates to

the incoherent tune being negatively shifted from the bare

machine tune. This KV tune shift is frequently used as a

unit to express the strength of space charge in a machine, it

amounts to

ΔQKV
x,y = −

KSCR2

4σx,y(σx + σy)Qx,y
, (1)

where R denotes the effective machine radius, σx,y the trans-
verse r.m.s. beam sizes andQx,y the transverse bare machine

tunes. The dimensionless space charge perveance reads

KSC �
qλ

2πε0βγ2p0c
(2)

with q the charge per particle, λ the line charge density in
C/m and ε0 the vacuum permittivity.

If the beam is transversely Gaussian normal distributed,

space charge becomes non-linear. The linearised slope of
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the self-fields in the core of the Gaussian distribution then

amounts to twice the linear slope of the r.m.s.-equivalent
KV distribution. On the other hand, space charge becomes

very weak for the halo particles far outside the core. There-

fore, the space charge shifted incoherent tunes ΔQSC
x,y spread

from close to the bare betatron tune Qx,y to twice the KV

incoherent tune shift:

max
{
ΔQSC

x,y

}
= 2 · ΔQKV

x,y . (3)

In terms of the coherent perspective, the transverse dipolar

moments of the beam distribution f ,

〈u〉(s) =
∫

d6ζ u f (ζ ; s) (4)

for u = x, y and s the path length along the ring, remain
unaffected by space charge: due to Newton’s principle of

actio = reactio, the sum of all binary forces between the

particles vanishes. Direct space charge hence plays a role

only from the quadrupolar moments on,

σu(s) =
∫

d6ζ (u − 〈u〉)2 f (ζ ; s) . (5)

In the transverse plane, the quadrupolar moments are often

referred to as envelopes. Assuming beams of elliptic sym-

metry with a monotonically decreasing distribution within a

constant focusing channel with decoupled optics, the r.m.s.

envelope equations [12, 13] describe the evolution of these

quadrupolar moments σx,y(s) along the ring,

d2σx
ds2

+ Kxσx −
ε2x,geo

σ3x
−

KSC

2(σx + σy)
= 0

d2σy
ds2

+ Kyσy −
ε2y,geo

σ3y
−

KSC

2(σx + σy)
= 0

(6)

Here, Kx,y = (βx,y)
−2 =

(
Qx,y/R

)2
represent the external fo-

cusing in each plane with βx,y denoting the constant betatron
functions. The (possibly slowly changing) geometric trans-

verse emittances ε{x,y },geo provide the respective thermal
barrier term. Last but not least, the space charge perveance

term couples the two envelope equations.

By linearising Eq. (6) around the equilibrium values of

the quadrupolar moments, one can solve the corresponding

eigenvalue problem. Under stable beam conditions (e.g.

neglecting modes that can change the emittance) one finds

two quadrupolar eigenmodes of the envelope equations at

the two tunes Q±. In their expressions (see e.g. Ref. [9,

Eq. (2.110)]) one readily finds a term proportional to the

expression of the incoherent KV tune shift Eq. (1). After

substituting this term and neglecting quadratic orders, one

readily derives the general relation

ΔQKV
x,y =

1 +
σy,x

σx,y

2Qx,y
Λ , (7)

where the physical observables (i.e. the quadrupolar modes

Q±, bare machine tunesQx,y and the beam size ratio σy/σx)

are explicitly contained in the quantity

Λ �
Q2
+ +Q2

− − 4
[
Qx

2 +Qy
2
]

4 + 3
σy

σx
+ 3σx

σy

. (8)

Λ is negative (such as ΔQKV
x,y) which reflects the defocusing

effect of direct transverse space charge. The general expres-

sion Eq. (7) for the quadrupolar modes (first derived in [14])

has two well-known limit cases:

1. the decoupled split tunes case (e.g. [5, first Eq.]) with

independent horizontal and vertical mode, and

2. the fully coupled axi-symmetric case (e.g. [15, Eqs. (26)

and (28)]) with the anti-symmetric and the breathing

mode.

Equation (7) in principle allows to measure the strength of

space charge (in units of the KV tune shift) directly through

the observation of the quadrupolar frequencies. Reference

[16] discusses how approaching the coupling resonance re-

flects on the KV tune shift when comparing to the decoupled

split tunes formula.

The power of the envelope equations lies in the r.m.s.-
equivalence of beam distributions, whose collective second-

order dynamics are uniquely described by Eq. (6) [13, 15,

17]. Suppose two different transverse distributions of the

same r.m.s. sizes (e.g. the above Gaussian and KV distribu-

tion): even though the incoherent tunes may be distributed

very differently, the coherent behaviour of these two r.m.s.-
equivalent beams under space charge will be identical.
Until here we have discussed coasting beam conditions.

Under typical synchrotron conditions, longitudinal motion

is orders of magnitude slower than the transverse particle

oscillations. This variation in bunched beams can hence be

considered adiabatic, which leads to longitudinally varying

space charge conditions for the transverse beam dynamics.

In the incoherent picture, the above space charge tune shift

Eq. (1) then effectively scales with ΔQKV
x,y = ΔQKV

x,y(z) ∝

λ(z). Ref. [6] discusses the corresponding implications for
the collective motion by investigating the three-dimensional

envelope equations including the longitudinal σz envelope.
For long bunches and low synchrotron frequency, the trans-

verse and longitudinal degrees of freedom indeed decou-

ple resulting in coasting beam like conditions for the trans-

verse plane, cf. e.g. [6, Fig. 2]. Consequently, the transverse

quadrupolar modes remain well described by the previous

two-dimensional expressions, which now depend on the

varying longitudinal line charge density λ(z). Considering
the quadrupolar frequency spectrum for a typical parabolic

bunch shape, one therefore now expects two bands of en-
velope modes, one for the higher Q+(z) and one for the
lower Q−(z) (which can in principle overlap for strong space
charge). Each band ranges from the vanishing space charge

conditions at the head and tail of the bunch to the strongest

transverse self-fields at the bunch core. The former con-

dition leaves Q± close to 2Qx,y while the latter translates

to maximally reduced Q±. This coherent tune spread of
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the envelopes due to the longitudinal bunch profile should

not be confused with the incoherent tune spread of a trans-
verse non-uniform distribution (such as the aforementioned

Gaussian normal distribution).

In the case of linear coupling (through skew quadrupole

components in the external magnetic fields), additional

Kxyσx,y coupling terms enter the envelope equations Eq. (6).
This system of equations has been solved in Ref. [18] and two

additional distinct odd modes are found (again restricting

ourselves to stable beam conditions). For vanishing space

charge, the two even quadrupolar modes Q± reduce to 2Qx

and 2Qy , while the two odd modes essentially reduce to

|Qx − Qy | and |Qx +Qy |.

One more important ingredient to understand the eigen-

modes within the quadrupolar spectrum of a beamwith finite

momentum spread is due to the dispersion function Dx gen-

erated by the horizontal bending magnets in a planar circular

machine. With the dispersive contribution to the horizontal

r.m.s. beam size,

σ2x = βxεx,geo + D2
xδ

2 , (9)

the set of coasting-beam envelope equations Eq. (6) corre-

spondingly extends to a third equation for the dispersion

function modified by space charge [19, 20]. This additional

degree of freedom gives rise to yet another second-order

eigenmode, the coherent dispersion mode. At zero current
and no synchrotron motion, its tune Qd is identical to the

horizontal bare tuneQx , whileQd decreases with increasing

space charge.

MEASUREMENTS
Set-up
In the PS, the stripline pick-up PR.BQL72 in section 72 is

part of the base-band Q-measurement (BBQ) system. For

our measurements, the four electrodes top (T), bottom (B),

left (L) and right (R) are configured in quadrupolar mode

yielding the following combined signal of induced voltages,

Vq = (VL + VR) − (VT + VB) . (10)

This combination results in the QPU time signal for the kth
turn

SQPU(k) ∝
〈
x2
〉
−
〈
y2
〉

= σ2x (k) − σ
2
y (k) + 〈x〉2 (k) − 〈y〉2 (k) , (11)

where 〈·〉 refers to the integration over phase space∫
d6ζ f (ζ ; k). Analogous to the set-up in [8], we are mainly

interested in the frequency content of this signal in order to

determine the quadrupolar eigenmodes of the proton beam.

To this end, summation and subtraction of the induced elec-

trode potentials are carried out in analog. Only then is the

result digitised in order to improve the resolution of the

generally very small quadrupolar signal amplitudes.

In order to measure the quadrupolar beam transfer func-

tion, we excite the beam via the kicker plates of the new TFB

system of the PSB in section 97. First, the orbit has been

corrected to minimise the induced difference signal on the

kicker plates. To increase the sensitivity, the 20 dB attenua-

tors between the plate signals and the read-out electronics

have been removed. The centred orbit should suppress dipo-

lar feed-down of the quadrupolar excitation.

When pulsing the RF quadrupole at revolution frequency,

i.e. h = 1, it acts like an additional static quadrupolar

field to the beam. We characterised the strength of this

RF quadrupole by measuring the tune difference compar-

ing between no voltage and maximum amplitude (i.e. an

input signal before the amplifier of 1V peak-to-peak). The

dipolar tunes have been determined by mixing all 43 BPM

positions per plane [21] and evaluate the assembled signal

via SUSSIX frequency analysis [22]. When scanning the

relative phase between the RF quadrupole and the beam, we

found a statistically significant maximum tune difference of

ΔQx = 3 × 10
−3 and ΔQy = 2 × 10

−3.

This is a significant static impact on the beam, leading to

the conclusion that the TFB in quadrupolar configuration

should indeed be strong enough to resonantly excite the

quadrupolar beam eigenmodes at the respective frequencies.

For the quadrupolar beam transfer function measurement,

we start from a nominal LHC25 beam preparation cycle set-

up in the PS. In the upstream injector, the Booster, the

beams are prepared with a longitudinal acceptance bottle-

neck (equivalently to LHCINDIV beams) in order to achieve
large transverse emittances and low intensities. The machine

and beam parameters have been summarised in Table 1. The

KV tune shift of the operational LHC25 beams is about a

factor 5 higher (fivefold bunch intensity at roughly the same

transverse emittance).

Table 1: PS Machine and Beam Parameters

Lorentz factor PS injection γ = 2.49

revolution frequency frev = 437 kHz

beam intensity N = 0.3 × 1012 ppb

number of bunches stored 1

transverse emittance εx,y = 2.3mmmrad

average betatron function βx ≈ βy ≈ 16m

average dispersion Dx ≈ 3m

r.m.s. momentum deviation σδ = 1 × 10
−3

bunch length BL = 180 ns

synchrotron tune Qs = 1.67 × 10
−3

KV space charge tune shift ΔQKV
x,y = 0.02

In the PS, usually the skew quadrupole magnets are pow-

ered as to provide strong linear coupling in the optics in

order to suppress horizontal head-tail instabilities [23]. We

removed the linear coupling globally within a small time

window of 15ms during the cycle by adjusting the skew

quadrupole components using the closest tune approach

[24]. During 12ms of this window the TFB has been pulsed
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(a) Dipolar horizontal beam response. (b) Dipolar vertical beam response. (c) Quadrupolar beam response.

Figure 1: Spectrograms of dipolar BQS69 signals and the quadrupolar BQL72 signal.

in quadrupolar mode by means of an external waveform

generator: its excitation signal was split for each transverse

plane with one of the two channels inverted, amplified and

eventually fed to the kicker plates. As the hybrid splitter

and inverter were limited to RF above 2MHz, we chirped

between 2.19MHz to 2.4MHz corresponding to harmonic

5.01 ≤ h ≤ 5.49. This swept frequency range covers all rel-
evant quadrupolar eigenmodes for bare machine tunes below

a fractional tune of qx,y ≤ 0.25. In principle, quadrupo-
lar excitation at beam eigenfrequencies directly results in

emittance growth – thus, the frequency sweep needs to be

fast enough to treat this chirp as a mere perturbation to the

beam. We ensured the validity of this assumption by com-

paring flying wire scan profiles before and after the excita-

tion indicating negligible transverse r.m.s. emittance growth,

Δεx,y/εx,y ≤ 5%.

Results
Along with the quadrupolar SQPU signal we also recorded

the dipolar signals from the shoe-box pick-up BQS69 with an
optimised linear response. Figure 1 presents spectrograms

of the corresponding dipolar and quadrupolar turn-by-turn

data based on a 256 turn sliding FFT window. Figs. 1a and

1b show the tunes Qx,Qy as dipolar beam eigenmodes for

the horizontal and vertical plane, respectively. Tune shifts

from impedances and indirect space charge are of the order

O
(
10−3

)
[25], such that for the present low beam intensities

the measured dipolar tunes do not differ significantly from

the bare machine tunes. The quadrupolar signal SQPU during
the excitation is shown in Fig. 1c: note the two envelope

bands below 2Qx, 2Qy which are absent in the dipolar spec-

tra. The two instrumentation-based frequencies 0.381 frev
and 0.445 frev are beam independent and are ignored here

(similar irrelevant constant frequency lines exist in the dipo-

lar spectra).

The turn where SQPU(k) maximally correlates with the
reconstructed chirp excitation signal Iexc(k) yields the start
of excitation. The sinusoidal beam response contained in

SQPU can be interpreted like a modulation of the original

excitation signal, in analogy to radio signal as a modulation

on top of a baseband frequency. Demodulation of SQPU(k)
with the zero-padded Sexc(k) and its 90° shifted quadrature
signal Cexc(k) (which can be obtained e.g. by a Hilbert filter)
gives the in-phase I and quadrature Q components of the

beam response,

I(k) = SQPU(k) · Sexc(k) (12)

Q(k) = SQPU(k) · Cexc(k) . (13)

Filtering I and Q with a triangular Savitzky-Golay low-pass

filter of 65 turns width then extracts the pure beam response

content around the excitation baseband. Plotting the fil-

tered amplitude
√

I2 +Q2 vs. the instantaneous excitation

frequency fexc(k) yields the frequency response of the beam,
which is depicted in Fig. 2. The two envelope bands are

Figure 2: Demodulated frequency response of the beam.

indicated by “Q± spread”. The colour areas mark their es-

timated extents below the measured dipolar tunes 2Qx,y of

about

ΔQ+ ≈ 0.058 and ΔQ− ≈ 0.06 . (14)

Under the assumption that only direct space charge con-

tributes to the envelope spread, applying Eq. (6) to these
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values and the beam parameters of Table 1 yields KV tune

shifts of ΔQKV
x ≈ 0.05 and ΔQKV

y ≈ 0.04 – twice as much
as the computed value in Table 1 based on Eq. (1).

The beam response shows the dipolar peaks at Qy and

with small amplitude at Qx . The latter is neighboured by a

large and wide peak on the left and a narrow peak on the

right. The left peak is a candidate for the coherent dispersive

mode shifted downwards from Qx by space charge.

NUMERICAL SIMULATIONS
PyHEADTAIL Simulations on the GPU with a 3D

particle-in-cell space charge model yield the quadrupolar

eigenmodes of the PS bunch. The macro-particle simula-

tions are based on linear betatron motion in a constant focus-

ing channel with non-linear synchrotron motion. Without

taking into account dispersion and chromaticity, the simu-

lated quadrupolar spectrum exhibits envelope bands whose

width identically reproduces Eq. (7). When including effec-

tive dispersion at Dx = 3m, the coherent dispersive mode

enters the spectrum as a distinct peak located at Qx . Increas-

ing the synchrotron tune for vanishing space charge shows

that the coherent dispersive mode splits into two peaks at

Qx ± Qs. This separation almost vanishes for the usual PS

conditions at Qs = 0.0017, cf. Table 1. For finite space
charge, the coherent dispersive mode indeed shifts below

Qx as explained in the theory section. However, only includ-

ing the natural linear chromaticity of the PS,Q′
x = −0.83Qx

and Q′
y = −1.12Qy , recovers the measured location of the

coherent dispersive mode. Most importantly, chromatic-

ity effectively broadens the width of the envelope bands to

almost twice the value as observed without chromaticity.

Figure 3 compares these simulation results for the σ2x − σ
2
y

signal (without the dipolar contributions) to the measured

beam frequency response. Applying SUSSIX frequency

analysis reveals the contained side-band structure proving

the influence of the longitudinal plane: the coherent disper-

sive mode splits into several peaks in distance of Qs and the

same happens to the envelope bands.

Figure 3: Comparison between measured beam frequency

response and simulated eigenmodes.

CONCLUSION
This paper presented the direct measurement technique

of space charge in units of the incoherent KV tune shift via

the corresponding frequency shift of coherent quadrupolar

i.e. second-order modes. The measured quadrupolar fre-

quency response of bunched beam at the CERN PS shows

the expected envelope bands. This clearly qualifies the PS

hardware equipment: the kicker plates of the PS transverse

feedback system in quadrupolar configuration sufficiently

excite the beam to observe the typically rather weak enve-

lope eigenmodes by the stripline pick-up, which thus proves

to be sensitive enough. Furthermore, the second-order co-

herent dispersive mode has been identified as a significant

spectral component. The comparison of the measurements

with numerical simulations points out chromaticity as a ma-

jor impact: finite chromaticity considerably modifies the

quadrupolar eigenmodes by (i.) broadening the envelope

bands and (ii.) splitting the coherent dispersive mode into

side-bands. The former observation has necessarily to be

taken into account when inferring the incoherent KV tune

shift from the envelope band width.

Next steps for the on-going CERN studies include (i.)

quadrupolar beam transfer function measurements at vanish-

ing chromaticity, (ii.) further investigation of injection os-

cillations, in particular Chernin’s odd envelope modes when

injecting from decoupled transfer line optics into tightly

coupled PS optics, and (iii.) dedicated space charge experi-

ments such as resonance studies. A theoretical analysis of

quadrupolar modes at finite linear chromaticity could vastly

improve the present understanding, which to the knowledge

of the author has so far not been investigated.
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