Author: Bartosik, H.
Paper Title Page
MOA1PL01 Challenges in Understanding Space Charge Dynamics 1
 
  • H. Bartosik
    CERN, Geneva, Switzerland
 
  Space charge effects in high intensity and high brightness synchrotrons can lead to undesired beam emittance growth, beam halo formation and particle loss. A series of dedicated machine experiments has been performed over the past decade in order to study these effects in the particular regime of long-term beam storage (105-106 turns) as required for certain applications. This paper gives an overview of the present understanding of the underlying beam dynamics mechanisms. In particular it focuses on the space charge induced periodic resonance crossing, which has been identified as the main mechanism causing beam degradation in this regime. The challenges in further progressing with the understanding, the modelling and the mitigation of these space charge effects and the resulting beam degradation are discussed. Furthermore, an outlook for possible future directions of studies is presented.  
slides icon Slides MOA1PL01 [22.877 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-MOA1PL01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP2WA04 Recent Results from the Wideband Feedback System Tests at the SPS and Future Plans 38
 
  • K.S.B. Li, H. Bartosik, M.S. Beck, E.R. Bjørsvik, W. Höfle, G. Kotzian, T.E. Levens, M. Schenk
    CERN, Geneva, Switzerland
  • J.E. Dusatko, J.D. Fox, C.H. Rivetta
    SLAC, Menlo Park, California, USA
  • M. Schenk
    EPFL, Lausanne, Switzerland
  • O. Turgut
    Stanford University, Stanford, California, USA
 
  A high bandwidth transverse feedback demonstrator system has been devised within the LARP framework in collaboration with SLAC for the LHC Injectors Upgrade (LIU) Project. The initial system targeted the Super Proton Synchrotron (SPS) at CERN to combat TMCI and electron cloud instabilities induced for bunches with bunch lengths at the 100 MHz scale. It features a very fast digital signal processing system running at up to 4~GS/s and high bandwidth kickers with a frequency reach of ultimately beyond 1~GHz. In recent years, the system has gradually been extended and now includes two stripline kickers for a total power of 1~kW delivering correction signals at frequencies of currently more than 700~MHz. This talk will cover recent studies using this demonstrator system to overcome TMCI limitations in the SPS. We will conclude with future plans and also briefly mention potential applications and requirements for larger machines such as the LHC or the HL-LHC.  
slides icon Slides MOP2WA04 [19.091 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-MOP2WA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP2WA03 Studies of Capture and Flat-Bottom Losses in the SPS 180
 
  • M. Schwarz, H. Bartosik, E. Chapochnikova, A. Lasheen, J. Repond, H. Timko
    CERN, Geneva, Switzerland
 
  One of the strong limitations for reaching higher beam intensities in the SPS, the injector of the LHC at CERN, are particle losses at flat bottom that increase with beam intensity. In this paper, different sources of these losses are investigated for two available SPS optics, using both measurements and simulations. Part of the losses originate from the PS-to-SPS bunch-to-bucket transfer, because the PS bunches are rotated in longitudinal phase space before injection and do not completely fit into the SPS RF bucket. The injection losses due to different injected bunch distributions were analyzed. Furthermore, at high intensities the transient beam loading in the SPS has a strong impact, which is (partially) compensated by the LLRF system. The effect of the present and future upgraded one-turn delay feedback system and phase loop on flat-bottom losses was studied using the longitudinal tracking code BLonD. Finally, the total particle losses are also affected by limitations in the SPS momentum aperture, visible for higher RF capture voltages in optics with lower transition energy and higher dispersion.  
slides icon Slides TUP2WA03 [8.038 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA1WA02 Approaching the High-Intensity Frontier Using the Multi-Turn Extraction at the CERN Proton Synchrotron 231
 
  • A. Huschauer, H. Bartosik, S. Cettour-Cave, M. R. Coly, D.G. Cotte, H. Damerau, G.P. Di Giovanni, S.S. Gilardoni, M. Giovannozzi, V. Kain, E. Koukovini-Platia, B. Mikulec, G. Sterbini, F. Tecker
    CERN, Geneva, Switzerland
 
  Complementary to the physics research at the LHC, several fixed target facilities receive beams from the LHC injector complex. In the scope of the fixed target physics program at the Super Proton Synchrotron, high-intensity proton beams from the Proton Synchrotron are extracted using the Multi-Turn Extraction scheme, which is based on particle trapping in stable islands of the horizontal phase space. Considering the number of protons requested by future experimental fixed target facilities, such as the Search for Hidden Particles experiment, the currently operationally delivered beam intensities are insufficient. Therefore, experimental studies have been conducted to optimize the Multi-Turn Extraction technique and to exploit the possible intensity reach. The results of these studies along with the operational performance of high-intensity beams during the 2017 run are presented in this paper. Furthermore, the impact of the hardware changes pursued in the framework of the LHC Injectors Upgrade project on the high-intensity beam properties is briefly mentioned.  
slides icon Slides WEA1WA02 [25.566 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA1WA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2WA01 High Intensity Effects of Fixed Target Beams in the CERN Injector Complex 237
 
  • E. Koukovini-Platia, H. Bartosik, M. Migliorati, G. Rumolo
    CERN, Geneva, Switzerland
  • M. Migliorati
    INFN-Roma1, Rome, Italy
  • M. Migliorati
    Sapienza University of Rome, Rome, Italy
 
  The current fixed target (FT) experiments at CERN are a complementary approach to the Large Hadron Collider (LHC) and play a crucial role in the investigation of fundamental questions in particle physics. Within the scope of the LHC Injectors Upgrade (LIU), aiming to improve the LHC beam production, the injector complex will be significantly upgraded during the second Long Shutdown (LS2). All non-LHC beams are expected to benefit from these upgrades. In this paper, we focus on the studies of the transverse instability in the Proton Synchrotron (PS), currently limiting the intensity of Time-Of-Flight (ToF) type beams, as well as the prediction of the impact of envisaged hardware modifications. A first discussion on the effect of space charge on the observed instability is also being presented.  
slides icon Slides WEA2WA01 [2.483 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA2WA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO008 SPS Long Term Stability Studies in the Presence of Crab Cavities and High Order Multipoles 284
 
  • A. Alekou, H. Bartosik, R. Calaga, M. Carlà, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • R.B. Appleby, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  A local Crab Cavity (CC) scheme will recover the head-on collisions at the IP of the High Luminosity LHC (HL-LHC), which aims to increase the LHC luminosity by a factor of 3-10. The tight space constraints at the CC location result in axially non-symmetric cavity designs that introduce high order multipole CC components. The impact of these high order components on the long term stability of the beam in the SPS machine, where two prototype crab cavities are presently installed in the CERN SPS to perform tests with beam, is presented. Furthermore, the Dynamic Aperture is studied in the presence of the SPS errors. Future plans are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO011 Studies of Transverse Instabilities in the CERN SPS 291
 
  • M.S. Beck, H. Bartosik, M. Carlà, K.S.B. Li, G. Rumolo, M. Schenk
    CERN, Geneva, Switzerland
  • U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  In the framework of the LHC Injectors Upgrade (LIU), beams with about twice the intensity compared to the present values will have to be accelerated by the CERN Super Proton Synchrotron (SPS) and extracted towards the Large Hadron Collider (LHC). Machine studies with intensity higher than the nominal LHC beam have shown that coherent instabilities in both transverse planes may develop at injection energy, potentially becoming a limitation for the future high intensity operation. In particular, a transverse mode coupling instability is encountered in the vertical plane, the threshold of which can be sufficiently increased by changing the machine optics. In addition, a headtail instability of individual bunches is observed in the horizontal plane in multi-bunch operation, which requires stabilization by high chromaticity. The PyHEADTAIL code has been used to check if the present SPS impedance model reproduces the experimental observations. The instability growth rates have been studied for different machine optics configurations and different chromaticity settings. Other stabilizing mechanisms like tune spread from octupoles or the transverse damper have also been investigated.  
poster icon Poster WEP2PO011 [4.940 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WD04 High-Brightness Challenges for the Operation of the CERN Injector Complex 352
 
  • K. Hanke, S.C.P. Albright, R. Alemany-Fernández, H. Bartosik, E. Chapochnikova, H. Damerau, G.P. Di Giovanni, B. Goddard, A. Huschauer, V. Kain, A. Lasheen, M. Meddahi, B. Mikulec, G. Rumolo, R. Scrivens, F. Tecker
    CERN, Geneva, Switzerland
 
  CERN's LHC injectors are delivering high-brightness proton and ion beams for the Large Hadron Collider LHC. We review the present operation modes and beam performance, and highlight the limitations. We will then give an overview of the upgrade program that has been put in place to meet the demands of the LHC during the High-Luminosity LHC era.  
slides icon Slides THA1WD04 [4.746 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WD04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)