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Introduction

o Space charge effects in high intensity and high brightness synchrotrons can
lead to undesired emittance growth, halo formation and particle loss

o Will focus here on space charge effects in the regime of long-term storage
- Bunched beam at injection plateau stored for ~seconds (to accumulate injections)

- Example: LHC Injector Upgrade (LIU) at CERN - see talks of G. Rumolo & K. Hanke
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Introduction

o Space charge effects in high intensity and high brightness synchrotrons can
lead to undesired emittance growth, halo formation and particle loss

o Will focus here on space charge effects in the regime of long-term storage
- Bunched beam at injection plateau stored for ~seconds (to accumulate injections)

- Example: LHC Injector Upgrade (LIU) at CERN - see talks of G. Rumolo & K. Hanke
- Example: FAIR project at GSI
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Introduction

o Space charge effects in high intensity and high brightness synchrotrons can
lead to undesired emittance growth, halo formation and particle loss

o Will focus here on space charge effects in the regime of long-term storage
- Bunched beam at injection plateau stored for ~seconds (to accumulate injections)

- Example: LHC Injector Upgrade (LIU) at CERN - see talks of G. Rumolo & K. Hanke
- Example: FAIR project at GSI

- Tight budgets on losses and / or emittance growth

o Approach to understanding space charge effects
« Controlled machine experiments

« Comparison with simulation models

« ldentification of relevant beam dynamics mechanisms




Pioneering experimental campaign at CERN PS (2002)

o Systematic measurement campaign on (horizontal) 4" order resonance

o Clear identification of two regimes:

« Beam loss & bunch shortening for bare machine working points close to or slightly
above the resonance

- Transverse emittance blow-up (of the core) further above the resonance
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Benchmark experiment at GSI SIS18 (2007)

o Extensive campaign studying 3 order resonance
« Coasting and bunched beams, low and high intensity

o For bunched beam same behavior as in PS 4" order resonance experiment
« Beam loss and beam growth regimes

measurement simulation

[/]

G. Franchetti et al., HB 2008 G. Franchetti et al., Phys. Rev. ST Accel. Beams 13, 114203 (2010)
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Mechanism: periodic resonance crossing

space charge detuning varies along bunch

synchrotron motion results in periodic tune
modulation of individual particles

chromaticity enhances tune excursion in
one half synchrotron period and reduces it

in other half

Bare tune

Ring resonance
Resonance

G. Franchetti et. al (2005)
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Consequences of periodic resonance crossing
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Experiment on coupled resonance at CERN PS (2012)

o 3rd order coupled sum resonance Qx + 2 Qy
- Beam loss and emittance growth regimes (as in case of 1D resonance)

« Very asymmetric development of tails / halo — also found in simulations
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Coupled dynamics on Qx + 2 Qy resonance

Resonant tori (“Fixed lines”) in phase space
F. Schmidt PhD thesis, and others

G. Franchetti and F. Schmidt Phys. Rev. Lett. 114, 234801 (2015)

G. Franchetti and F. Schmidt http://arxiv.org/abs/1504.04389
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Coupled dynamics on Qx + 2 Qy resonance

o Resonant tori (“Fixed lines”) in phase space

Experimental demonstration in SPS (ongoing)
H. Bartosik, G. Franchetti, F. Schmidt, M. Titze
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What are the (remaining) challenges?

o Macroparticle simulations for long storage times
- Computationally heavy - approximations have to be made

o Quantitative agreement between measurements and simulations

« Accurate measurement of beam parameters (particularly difficult for beam profiles
and beam halo)

« Good knowledge of machine linear and non-linear errors (much more difficult for old
machines)

« Accurate aperture model including misalignments

« Properly identifying and accounting for interfering effects (or suppressing them)

o Interplay with other mechanisms and their identification

o Mitigation of beam degradation
- Compensation of magnet resonances in presence of space charge

- Space charge compensation (e.g. using e-lenses studied by
Q. Boine Frankenheim and W. Stem)




Simulation approaches

o Space charge is all over the machine - need many space charge ‘kicks’
« Space charge interaction interleaved with particle tracking in magnetic guide field

Particle-In-Cell (PIC) Frozen potential
« Real number of particles represented « Assuming a fixed charge distribution
by ~10% macroparticles function (usually Gaussian)
« Assign fractional macroparticles « Calculate space charge force
charge to spacial grids analytically
« Solve Poisson equation on the grid « Smooth force at any spacial point

points to obtain electric field
+ no issue with noise - less particles

+ self consistent beam evolution needed for tracking a distribution

— computationally heavy — requires — not self consistent: evolution of
large number of macroparticles to charge distribution is not taken into
avoid artificial emittance growth + account — semi-self consistency by
only special variants are symplectic* periodic update of potential

*J. Qiang, “Symplectic multiparticle tracking model for self-consistent space-charge simulation”, PRAB 20, 014203 (2017)




Code-to-code benchmarking

o GSI SIS18 space charge code benchmarking suite

- Originally meant for comparison of particle trapping in 3" order resonance between
MICROMAP (Franchetti) and SIMPSONS (Machida)

- Later became the standard test case (consisting of 9 steps)

- Trapping observed in frozen potential and in self-consistent PIC codes!
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Code-to-code benchmarking

o GSI SIS18 space charge code benchmarking suite

- Originally meant for comparison of particle trapping in 3" order resonance between
MICROMAP (Franchetti) and SIMPSONS (Machida)

- Later became the standard test case (consisting of 9 steps)

- Trapping observed in frozen potential and in self-consistent PIC codes!

- Also long term emittance growth consistent between codes (nho losses here)
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Code-to-code benchmarking

o GSI SIS18 space charge code benchmarking suite

- Originally meant for comparison of particle trapping in 3" order resonance between
MICROMAP (Franchetti) and SIMPSONS (Machida)

- Later became the standard test case (consisting of 9 steps)

- Trapping observed in frozen potential and in self-consistent PIC codes!

- Also long term emittance growth consistent between codes (nho losses here)

o Future steps

« Discussions ongoing for extending the benchmarking suite with additional test
cases (e.g. including a case where losses are expected)




Importance of machine model at the CERN PSB

o Benchmark campaign on half integer resonance Qy = 4.5

« Reproducing losses at half integer resonance at PSB requited accurate (linear)
machine model obtained from measurements (LOCO)

« Bunch shortening in double harmonic RF nicely reproduced in simulations
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Resonance(s) at Qy = 6.25 in the CERN PS

o Losses are observed for high brightness beams for Qy > 6.25
« Studies in 2013 indicate that losses occur (mostly) for high brightness beams

measured beam loss

1,027

— Beém 4

—Beam 3 —0.005 E
B r 7222:? 8
O ot ‘ ' -

v ~i~‘r:<1|4”l| Tt i --.Q+065 —0.01 Re)

\ 0

..0.98F ("u —0.015 (2]

8 i B =

096 \ e 0.02 2
< U \ =

2 \ o aN -2

g 2 3 179N §
8ooa 3 . g

o % 2 4-0.03 =

£ Y ke

2 00 ﬂ'\% ] ~0.035 -

| \ 9

: {M‘: —0.04 )

0.9 6.24 : : : NXM}%‘MM\\s\x‘mrfmwhwn Al 8

gt NS SO ' S S S SR —0.045 8

0.88L1 I I I I I I -

%200 400 600 800 1000 1200 1400 -0.05
Time [ms] 10 615 620 625 6.30

Horizontal tune




Resonance(s) at Qy = 6.25 in the CERN PS

o Losses are observed for high brightness beams for Qy > 6.25
« Studies in 2013 indicate that losses occur (mostly) for high brightness beams

- S. Machida with R. Wasef et al. found that the space charge potential of Gaussian

Normalized Bunch Intensity

beam excites 8" order resonance due to strong harmonic 50 of PS lattice
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Resonance(s) at Qy = 6.25 in the CERN PS

o Losses are observed for high brightness beams for Qy > 6.25
« Studies in 2013 indicate that losses occur (mostly) for high brightness beams

- S. Machida with R. Wasef et al. found that the space charge potential of Gaussian
beam excites 8" order resonance due to strong harmonic 50 of PS lattice

o Recent campaigns concentrated on tune scans in different beam conditions
- Simulations do not explain the observed losses completely
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Resonance(s) at Qy = 6.25 in the CERN PS

o Losses are observed for high brightness beams for Qy > 6.25
« Studies in 2013 indicate that losses occur (mostly) for high brightness beams

- S. Machida with R. Wasef et al. found that the space charge potential of Gaussian
beam excites 8" order resonance due to strong harmonic 50 of PS lattice

o Recent campaigns concentrated on tune scans in different beam conditions
- Simulations do not explain the observed losses completely

Directions of investigations

* Interplay with residual (unknown) magnetic resonance excitation at
Qy = 6.25 (e.g. octupole components) — difficult to measure

* Incomplete aperture model

* Indirect space charge effects (proposed by S. Machida)

» Other missing ingredients (e.g. coherent effects)

Issue
» With high brightness (to enhance space charge excited
resonance) “probing” multiple resonances due to large tune spread

F. Asvesta, H. Bartosik, A. Huschauer, Y. Papaphilippou, A. Saa Hernandez, G. Sterbini
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Impact of tune ripple at the CERN SPS

o Benchmark experiment at CERN SPS (started in 2016)
- Horizontal 3" order resonance at Qx = 20.33 deliberately excited

« Additional resonance observed at Qx = 20.40 (most likely space charge driven)

measurements
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Impact of tune ripple at the CERN SPS

o Benchmark experiment at CERN SPS (started in 2016)
- Horizontal 3" order resonance at Qx = 20.33 deliberately excited

« Additional resonance observed at Qx = 20.40 (most likely space charge driven)

« Simulations with frozen potential far from experiment unless (measured) SPS tune
ripple from power converters is taken into account — detailed studies ongoing

measurements
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Impact of tune ripple at the CERN SPS

o Benchmark experiment at CERN SPS (started in 2016)
- Horizontal 3" order resonance at Qx = 20.33 deliberately excited

« Additional resonance observed at Qx = 20.40 (most likely space charge driven)

« Simulations with frozen potential far from experiment unless (measured) SPS tune
ripple from power converters is taken into account — detailed studies ongoing

- Confirmed in direct experiment with enhanced tune ripple

measurement: natural ripple measurement: Qx ripple: t6e-3 @ 90 Hz
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Interplay with IBS for Pb82+ ions at CERN SPS

o Pb82+ ion bunches have to be accumulated over ~40 s at SPS
« AQy ~ -0.3 at injection

- Strong emittance growth, partially from Intra Beam Scattering
« Biggest concern for this beam is transmission (to maximize luminosity in LHC)

« Losses maybe due to interplay between space charge and Intra Beam Scattering —
to be studied
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Conclusions & Outlook

Space charge effects in the long-term storage regime can result in beam loss
and emittance growth due to periodic resonance crossing

« Result of systematic experiments and studies performed over the last decade for 1D and
more recently also for 2D resonances

Overcoming limitations of simulations for long storage times is challenging
- Simulations with frozen potential avoid noise issues but are not (fully) self-consistent

« Good agreement between PIC and frozen potential in code-to-code benchmarking —
cases with losses to be checked systematically

Quantitative agreement between experiment and simulations is challenging
« Requires accurate knowledge of machine aperture and linear / non-linear errors

 ldentify and suppress interfering effects or properly account for them in simulation

Future directions: interplay with other mechanisms need to be studied
« Tune modulation induced by power converter ripple

« Intra Beam Scattering (especially for ions)
« E-cloud (see talk of G. Rumolo)

« Indirect space charge and impedance
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