Author: Zhang, M.
Paper Title Page
THP016 Study of Microbunching Instability in SHINE Linac 629
 
  • D. Huang
    SINAP, Shanghai, People’s Republic of China
  • D. Gu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • M. Zhang
    Shanghai Advanced Research Institute, Pudong, Shanghai, People’s Republic of China
 
  The SHINE project in China aims at the next generation high repetation rate and high power hard X-ray free electron laser facility. The high quality electron beam is thus requested in the linac to generate such a high quality FEL lasing. As the prerequisite, the microbuncing instability introduced by the nonlinear effects such as the LSC, CSR and wakefields in the bunch compressing process must be taken care of, otherwise the electron beam will not meet the requirements of lasing. In this article, the microbunching effects including the gain of the instability in the linac of SHINE are estimated, and several ways for the control of the instability are proposed.  
poster icon Poster THP016 [0.536 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP016  
About • paper received ※ 24 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA05
First Lasing at SXFEL  
 
  • Z.T. Zhao, M. Gu, Q. Gu, Y.B. Leng
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, B. Liu, D. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • G.P. Fang, L. Yin, M. Zhang
    SINAP, Shanghai, People’s Republic of China
 
  Shanghai soft X-ray free-electron laser (SXFEL) started its construction in December of 2014. After years of effort, first lasing at 8.8 nm with designed cascading mode is finally achieved in 2019. The commissioning progress and recent results will be reported.  
slides icon Slides MOA05 [9.952 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP058 Drive Laser Temporal Shaping Techniques for Shanghai Soft X-Ray Free Electron Laser 466
 
  • X.T. Wang, T. Lan, M. Zhang, W.Y. Zhang
    SINAP, Shanghai, People’s Republic of China
  • L. Feng, B. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • C.L. Li
    Shanghai Advanced Research Institute, Pudong, Shanghai, People’s Republic of China
 
  The design of Shanghai soft X-ray free electron laser (SXFEL) is based on laser driven photocathode, which can provide emittance <2.0 mm¿mrad with 500 pC charge. The temporal shape of drive laser has significant influence on the electron beam emittance and brightness. This paper presents the transport line of drive laser system and the temporal shaping techniques for SXFEL. This drive laser produces 8 picosecond 266nm ultraviolet pulses with repetition rate 10Hz. A transverse deflecting cavity was used for indirectly characterizing the laser pulse temporal structure. Here we present the drive laser system with its temporal shaping method, and measurement results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP058  
About • paper received ※ 20 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)