Paper | Title | Page |
---|---|---|
MOP043 | Plasma Wakefield Accelerated Beams for Demonstration of FEL Gain at FLASHForward | 140 |
|
||
Funding: Work supported by Helmholtz ARD program and VH-VI-503 FLASHForward is the Future-ORiented Wakefield Accelerator Research and Development project at the DESY free-electron laser (FEL) facility FLASH. It aims to produce high-quality, GeV-energy electron beams over a plasma cell of a few centimeters. The plasma is created by means of a 25 TW Ti:Sapphire laser system. The plasma wakefield will be driven by high-current-density electron beams extracted from the FLASH accelerator. The project focuses on the advancement of plasma-based particle acceleration technology through the exploration of both external and internal witness-beam injection schemes. Multiple conventional and cutting-edge diagnostic tools, suitable for diagnosis of short electron beams, are under development. The design of the post-plasma beamline sections will be finalized based on the result of these aforementioned diagnostics. In this paper, the status of the project, as well as the progress towards achieving its overarching goal of demonstrating FEL gain via plasma wakefield acceleration, is discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP043 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP064 | An Experimental Setup for Probing the Thermal Properties of Diamond Regarding Its Use in an XFELO | 200 |
|
||
Funding: Work supported by BMBF (FKZ 05K13GU4 + FKZ 05K16GU4) This work presents an pump-probe setup for measuring the thermal evolution of diamond crystals at cryogenic temperatures under the heat load conditions of an X-ray free electron laser oscillator (XFELO). As the diamond Bragg reflectors of an XFELO are subjected to intense heat loads during operation, the correct understanding of the thermal evolution in diamond plays a major role in the correct modeling of an XFELO. Stoupin et al.* did a room temperature x-ray diffraction measurement on the nanosecond transient thermal response of diamond to an optical pulse. The measurements presented in this paper for the first time incorporate effects due to the very short penetration depth of only a few μm of an XFELO pulse in combination with the high mean free path in diamond at cryogenic temperatures. While at room temperature the heat equation based on Fourier's law accurately fits the measured results, this vastly changes due to the onset of ballistic processes at cryogenic temperatures. These changes, which are hard to predict theoretically, show the necessity of measurements of the thermal evolution in diamond with special regard to a correct mimicking of the heat load in an XFELO. *S. Stoupin et al., Phys. Rev. B, vol. 86, p. 054301, 2012. |
||
![]() |
Poster MOP064 [2.239 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP064 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUC02 | Thermal and Mechanical Stability of Bragg Reflectors under Pulsed XFEL Radiation | 240 |
|
||
Funding: BMBF FKZ 05K16GU4 Free-electron laser(FEL) x-ray radiation can deliver pulses with a huge amount of energy in short time duration. X-ray optics like Bragg reflectors therefore must be chosen in a way that they can withstand radiation-material interaction without getting damaged so that they can maintain their technical functionality. Therefore thermal and mechanical reactions of Bragg reflectors to the radiation induced thermal strain and force (radiation pressure) have been considered in this study. The theory of thermoelasticity has been used to simulate the strain conditions at saturation of the amplifying process in an X-ray free-electron laser oscillator(XFELO). One aim of this study was to investigate, if the radiation pressure could be an effect that gives a considerable contribution to the strain propagation. The results of the simulations have shown that, if Bragg backscattering of the X-ray pulse by a diamond crystal with 99% reflectivity and 1% absorptivity is assumed, the value of the thermally induced strain is about two magnitudes higher than the radiation pressure induced strain. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUC02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUC03 |
High-Flux, Fully Coherent X-Ray FEL Oscillator | |
|
||
Funding: The ANL part of this work is supported by the U.S. DOE Office of Science under Contract No. DE-AC02-06CH11357 and the SLAC part under contract No. DE-AC02-76SF00515. By optimizing the parameters of the accelerator, undulator, and the optical cavity, an XFELO driven by an 8-GeV superconducting linac is predicted to produce 10zEhNZeHn photons per pulse at the important photon energies around 14.4 keV.* This is an order of magnitude larger than that in previous designs.** With a BW of 3 meV (FWHM), rep rate of 1 MHz, and taking into account the full coherence, the spectral brightness is then 2×1026 photons per (mm2mr2 0.1\% BW), which is higher than any other source currently operating or anticipated in the future. Experiments at APS beam lines have shown that a high-quality diamond crystal can survive the power density (~15 kW/mm2) expected at the XFELO intra-cavity crystals preserving the high reflectivity.*** The compound refractive lenses can serve as the focusing element. Adding an XFELO to the suite of other FEL sources will, at a minor incremental cost but with a major scientific payoff, significantly expand the scientific capabilities at superconducting linac-based XFEL facilities, such as the European XFEL, the proposed LCLS-II High Energy upgrade and the XFEL project in Shanghai. * W. Qin et al., this conference. ** R.R. Lindberg et al., Phys. Rev. ST Accel. Beams, vol 14, 403 (2011). *** T. Kolodziej et al., this conference. |
||
![]() |
Slides TUC03 [4.956 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRA01 |
Fresh-Slice X-Ray Free Electron Laser Schemes for Advanced X-Ray Applications | |
|
||
Funding: This work was supported by Department of Energy contract nos DE-AC02-76SF00515 and DE-SC0012376 The novel fresh-slice XFEL scheme grants control on the temporal slice of the electron bunch lasing in each undulator section. The technique relies on a time-dependent electron bunch trajectory impressed by the transverse wakefield of a corrugated structure and subsequent orbit manipulation in the undulator section. Fully saturated double pulses are produced in two different undulator sections. The wavelength of each pulse is controlled by the undulator magnetic strength and the delay between the pulses can be scanned from a few femtosecond advance of the pulse generated on the bunch head in the second section to a picosecond delay provided by the magnetic chicane. Three-color saturated pulses are demonstrated by using three undulator sections and the polarization of the pulse generated in the last section can be controlled by the variable polarization Delta undulator. In this work we also show the early results for the first multi-stage amplification scheme, producing ultra-short single-pulses with a 100-GW power level in the soft X-rays. The multi-stage amplification is also demonstrated to improve the performance in power and pulse duration control for the two-color FEL scheme. |
||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |