An experimental setup for probing the cryogenic thermal properties of diamond regarding its use in an XFELO*

C. Maag¹, I. Bahns¹, J. Rossbach¹, H. Sinn², <u>P. Thiessen¹</u>, J. Zemella³ ¹Universät Hamburg, Hamburg, Germany; ²European XFEL GmbH, Hamburg, Germany, ³DESY, Hamburg, Germany

I. MOTIVATION

- XFELO oscillator (XFELO) promises longitudinally ● coherent hard X-ray pulses
- X-ray cavity based on Bragg reflection
- **Problem:** thermal load on crystals at 4.5 MHz rate \bullet
- **Thermal expansion:** lacksquare
 - Vibrations and supersonic pulses

- Shift of central wavelength satisfying Bragg's law
- material with ideal thermal properties: diamond
- At cryogenic T: Onset of quasi-ballistic processes \bullet
- \rightarrow Fourier's law of classical heat conduction begins to fail
- \rightarrow Necessity of measuring thermal properties under **XFELO** heat load conditions

Nanosecond 213 nm UV pump laser:

- deposits ~ same pulse energy as an XFELO pulse (~ 2.5μ J) with same penetration depth → perfect for mimicking XFELO heat load
- causes heating in diamond sample

 \rightarrow measured by green cw laser through shift in reflectivity $\rightarrow \Delta R/R \propto k_T \Delta T$

VI. MEASUREMENTS

- Measured ",raw" signal at $T_0 = 297$ K:
 - Slow µs ms long decline back to initial state ____
 - Too slow for thermal process (on ns scale)
- \rightarrow Excitation of long living electronic states: change in refractive index $\tilde{\eta} \rightarrow$ change in R 100 150 (t_{Probe}- t_{Pump}) [µs]

Thermal gradient ∇T varies on length scale ($\sim l_{opt}$)

\rightarrow On ns-scale apparent as constant offset ΔR_0

- Decline of ΔR on the ns-scale \rightarrow reliable fit by Fourier's law
- $-\lambda$ at $T_0 = 297$ K and $T_0 = 250$ K agrees well with literature
- \rightarrow expected, as $l_{mfp} \ll l_{opt}$ (no ballistic processes) \rightarrow proof of principle
- At $T_0 = 150$ K strong deviation from literature $\leftarrow l_{mfp} \approx l_{opt} \leftarrow \text{ballistic processes}$
- $T_0 = 297$ K: At 220 ns (green line) thermal processes not fully declined
- \rightarrow Pile up of heat in diamond at 4.5 MHz repetition rate (XFELO)
- $T_0 = 150 \,\mathrm{K}$: At 220 ns ΔR stronger declined \rightarrow Importance of cooling!

comparable to mean free path l_{mfp}

- Fourier's law based on local thermal equilibrium and $t \gg \tau$ \rightarrow becomes erroneous
- Deviation from fit to Fourier's law is good measure for _____ influence of ballistic processes
- 2. Boundary scattering: $l_{mfp}^{(bulk)} \gg d_{thickness}$.
 - Boundary conditions depend on energy ε dependent $l_{mfp}(\varepsilon)$

 \rightarrow very hard to predict

CONCLUSION & OUTLOOK

- Optical Experiment for measuring the thermal properties of diamond under XFELO conditions without necessity of valuable beamtime
- Measurements for the first time reveal significant influence of ballistic processes due to the gradient effect in diamond at low temperatures
- **Outlook:** Refine current low T_0 measurements \rightarrow information on pile up
 - additional measurements at lower temperatures to include effect of boundary scattering and on various differing crystals
 - Use setup for probing additional information such as ultrasonic pulses (Bahns et al., paper TUC02, this conference)

*Supported by BMBF **FKZ 05K13GU4 + FKZ 05K16GU4**

