A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kubarev, V. V.

Paper Title Page
MOPPH032 Development of Metal Mesh Based Quasi-optical Selective Components and Their Application in High-power Experiments at Novosibirsk Terahertz FEL 89
 
  • B. G. Goldenberg, P. V. Kalinin, V. V. Kubarev, N. Vinokurov, S. A. Kuznetsov
    BINP SB RAS, Novosibirsk
 
  Successful realization of terahertz research programs at the Novosibirsk FEL-facility requires detailed development, designing and optimization of passive quasi-optical selective components, intended for polarization and frequency gating of powerful THz-beams of NovoFEL radiation. Along with desired selective characteristics such components should be capable of operating over a long period of time under high-power load conditions (a few hundred Watts of average incident radiation power) without noticeable degradation of their properties. It admits to employ in selective components only low absorbing and thermostable materials, such as high conductivity metals and special types of polymers. This report is devoted to development of metal mesh based selective structures, such as polarizing beamsplitters (attenuators) and different frequency filters, and their application in high-power THz-experiments. Possibilities and prospects of two main production technologies are discussed: 1) conventional photolithography destined for manufacturing thin metal structures deposited on low-absorbing thermostable polymer films; 2) LIGA-technique intended for producing thick substrate-free metal structures.  
MOPPH042 Losses in Optical Resonator of Novosibirsk Terahertz Free Electron Laser: Theory and Experiment 107
 
  • V. V. Kubarev
    BINP SB RAS, Novosibirsk
 
  Design of optical resonator of Novosibirsk terahertz free electron laser (NovoFEL)was made on base simple analitical theory discribed in paper*. Direct comparison of the theory and many experiments on NovoFEL is presented.

* Kubarev V. V. Babinet principle and diffraction losses in laser resonators. Quantum Electronics 30(9)824-826(2000).

 
MOPPH043 Control and Diagnostic System of Novosibirsk FEL Radiation 111
 
  • V. V. Kubarev, E. V. Makashov, K. S. Palagin, S. S. Serednyakov
    BINP SB RAS, Novosibirsk
 
  The architecture the main capabilities of control and diagnostic system of the Novosibirsk FEL coherent radiation are described. The client-server model is used for software, controlling this system. The developed software is capable to work both in client and server mode. Also it can control various equipment – from FEL optical cavity mirrors to local equipment of users stations. The mode of control program operation and controlled equipment are determinates by external configuration files. Some results of the system operation are also presented.  
MOPPH044 Status of Novosibirsk ERL and FEL  
 
  • N. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, G. N. Kulipanov, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, N. Vinokurov
    BINP SB RAS, Novosibirsk
 
  The Novosibirsk terahertz free electron laser is based on the energy recovery linac (ERL) with room-temperature radiofrequency system. Some features of the ERL are discussed. The results of emittance measurements and electron optics tests are presented. The first stage of Novosibirsk high power free electron laser (FEL) was commissioned in 2003. Now the FEL provides electromagnetic radiation in the wavelength range 110 - 230 micron. The average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation. The second stage of the ERL, which has four orbits, is under construction.  
THAAU05 Light Pulse Structure, Spectrum and Coherency of Novosibirsk Terahertz Free Electron Laser  
 
  • E. I. Kolobanov, V. V. Kotenkov, G. N. Kulipanov, A. N. Matveenko, L. E. Medvedev, V. K. Ovchar, K. S. Palagin, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, N. Vinokurov, V. V. Kubarev
    BINP SB RAS, Novosibirsk
 
  Light pulse structure and spectrum of Novosibirsk free electron laser were studied by direct independent methods. Super fast Schottky diode was used in time domain experiments. Method of vacuum Fourier spectroscopy was applied for spectral investigations. Observation of spectral stability of each light pulse was made by grating monochromator with Schottky diode. Influence of cogerency on harmonic powers is also shown.  
slides icon Slides