# LIGHT PULSE STRUCTURE, SPECTRUM AND COHERENCY OF NOVOSIBIRSK TERAHERTZ FREE ELECTRON LASER

<u>Kubarev V.V</u>., Kolobanov E.I., Kotenkov V.V., Kulipanov G.N., Matveenko A.N., Medvedev L.E., Ovchar V.K., Palagin K.S., Salikova T.V., Scheglov M.A., Seredniakov S.S., Vinokurov N.A.

Budker Institute of Nuclear Physics, Novosibirsk, Russia



# Contents

- Introduction
- Instruments
- Experiments :
  - spectral width and detuning of electron frequency
  - three spectral regimes of NovoFEL
  - two types of modulation instability
  - narrowest spectrum and Fourier transform limit
  - coherency and harmonic generation
- Conclusion

### **Spectral devices of Novosibirsk FEL**



#### **Mesh Fabry-Perot interferometer:**

a) high spectral resolutionb) compactness and simplicity

#### Upgraded grating optical monochromator:

- a) wide spectral range of 0.3 300  $\mu\text{m}$
- b) real harmonic separation for on-line
  - adjustment and user's applications

#### **Bruker vacuum Fourier spectrometer IFS-66v:**

- a) clear vacuum spectrums
- b) wide spectral range of 1-1000  $\mu m$
- c) autocorrelation function (interferogram)

## **Ultra-fast Schottky diode detector**



#### Rise time of Schottky diode and Tektronix sampling oscilloscope



#### Spectrum versus detuning of electron beam frequency



f = 5.6 MHz

#### Power and spectral width versus detuning of electron beam frequency







4 ∆f

3 ∆f

2 ∆f

 $1 \Delta f = -5.54 \cdot 10^{-6} f$ 

0

#### Modulation harmonics in the light pulses



#### Modulation instability and sideband modes



#### Two types of sideband modes



#### Interferogram of stabilized regime and regime of modulation instability with pulsating coherency





# Spectrums





# Interferograms

#### Narrowest spectrum and Fourier transform limit



# **Spectral range of Novosibirsk terahertz FEL**

- First harmonic: 120 235 μm
- Second harmonic: 60 118 µm
- Third harmonic: 40 78 µm
- Total range: 40 235 μm

# Harmonic powers

- First harmonic: 370 (430) W 100 %
- Second harmonic: 370.0.5.0.015 = 2.8 W 1.5 %
- Third harmonic: 370.0.5.0.006 = 1.1 W 0.6 %

Only few gas laser lines in the range have power ~ 1 W. But overlapping of the spectral range by gas laser lines is 1% only!

# **Detuning curves of Novosibirsk FEL**



# Conclusion

- Spectral and temporal properties of NovoFEL radiation were measured independently.
- In stabilized regime with high coherency spectral width is close to Fouriertransform limit.
- Method of the stabilization is negative electron frequency detuning.
- In unstable regime spectral width can be larger in 3-7 times.
- Main reason of the spectral broadening is slippage and modulating sideband instability. Two types of the modulation instability were observed.
- Three mode regimes were found:
  - single-mode regime with high coherency
  - multi-mode regime with high coherency
  - mode-mixing (quasi single-mode) regime with low coherency.
- Harmonics of NovoFEL are radiated effectively only in stabilized regime.