Keyword Index: A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X

Superradiance

Paper Title Other Keywords Page
TUPP049 Smith-Purcell Distributed Feedback Laser radiation, smith-purcell, feedback, coupling 328
 
  • D. Kipnis, E. Dyunin, A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv
  
 

Smith-Purcell radiation is the emission of electromagnetic radiation by an electron beam passing next to an optical grating. Recently measurement of relatively intense power of such radiation was observed in the THz-regime [1]. To explain the high intensity and the super-linear dependence on current beyond a threshold it was suggested that the radiating device operated in the high gain regime, amplifying spontaneous emission (ASE) [1,2]. We contest this interpretation and suggest an alternative mechanism. According to our interpretation the device operates as a distributed feedback (DFB) laser oscillator, in which a forward going surface wave, excited by the beam on the grating surface, is coupled to a backward going surface wave by a second order Bragg reflection process. This feedback process produces a saturated oscillator. We present theoretical analysis of the proposed process, which fits the reported experimental results, and enables better design of the radiation device, operating as a Smith-Purcell DFB laser.

[1] A.Bakhtyari, J.E.Walsh, J.H.Brownell, Phys.Rev. ·1065 006503 (2002). [2] H.L. Andrews, C.A. Brau, Phys.Rev. ST-AB 7, 070701 (2004).

  
    
THPP032 An Experimental Test of Superradiance in a Single Pass Seeded FEL fel, laser, undulator, electron 526
 
  • T. Watanabe, D.F.L. Liu, J.B. Murphy, J. Rose, T.V. Shaftan, Y. Shen, T. Tsang, X.J. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
  • L. Giannessi, S. Spampinati
    ENEA C.R. Frascati, Frascati (Roma)
  • P. Musumeci
    Universita di Roma I La Sapienza, Roma
  • S. Reiche
    UCLA, Los Angeles, California
  
 

Funding: Work suppoted by the Brookhaven National Lab and Office of Naval Research

The SDL facility at BNL[1] is an excellent platform to explore some of the recent ideas related to superradiance in a seeded single pass FEL. At the SDL facility there is an operating FEL with a Ti:Sapphire seed laser and a high brightness e-beam with an energy up to 250 MeV. Seeding may be realized with pulses shorter than the e-beam bunch length to induce the superradiant regime. A status report concerning this experiment will be presented.

[1] A. Doyuran et al., PRSTAB, Vol. 7, 050701 (2004).

  
    
THOC003 Schemes of Superradiant Emission from Electron Beams and "Spin-Flip Emission of Radiation" radiation, electron, bunching, smith-purcell 668
 
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv
  
 

A unified analysis for Superradiant emission from bunched electron beams in various kinds of radiation scheme is presented. Radiation schemes that can be described by the formulation include Pre-bunched FEL (PB-FEL), Coherent Synchrotron Radiation (CSR), Smith-Purcell Radiation, Cerenkov-Radiation, Transition-Radiation and more. The theory is based on mode excitation formulation - either discrete or continuous (the latter - in open structures). The discrete mode formulation permits simple evaluation of the spatially coherent power and spectral power of the source. These figures of merit of the radiation source are useful for characterizing and comparing the performance of different radiation schemes. When the bunched electron beam emits superradiantly, these parameters scale like the square of the number of electrons, orders of magnitude more than spontaneous emission. The formulation applies to emission from single electron bunches, periodically bunched beams, or emission from a finite number of bunches in a macro-pulse. We have recently employed the formulation to calculate a ne kind of coherent radiation from electron beam: enhanced Electron Spin Resonance Emission from a polarized electron beam. Estimates of the characteristics and possible applications of this effect will be presented.