coupling
Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPP017 | Backward Wave Excitation and Generation of Oscillations in Free-Electron Lasers in the Absence of Feedback: Beyond the High Gain Approximation | laser, free-electron-laser, radiation, feedback | 266 |
| |||
Microwave tubes and free-electron lasers are based on distributed interaction between electromagnetic radiation and gain media. When such devices are operating in an amplifier configuration, a forward wave is amplified while propagating in a polarized medium, in a stimulated emission process. Formulating a coupled mode theory for excitation of both forward and backward waves in a distributed gain medium, we have identified in previous works [1] conditions leading to efficient excitation of backward wave without any mechanism of feedback or resonator assembly. The induced polarization is given in terms of an electronic susceptibility tensor, resulting in a coupling coefficient betweens the waves. In this work we extend our previous results in two directions: 1. We discuss the case of a complex coupling coefficient between the backward and forward waves and extend our previous results with respect to a real coupling coefficient, thus the present work discusses a more general and realistic case. 2. We discuss the solution of the same problem relaxing the "high gain" assumption. This leads to a more complex set of third order differential equations. [1] "Backward Wave Excitation and Generation of Oscillations in Distributed Gain Media and Free-Electron Lasers in the Absence Of Feedback" the 26th International FEL Conference, Trieste, Italy. |
|||
TUPP049 | Smith-Purcell Distributed Feedback Laser | radiation, smith-purcell, feedback, Superradiance | 328 |
| |||
Smith-Purcell radiation is the emission of electromagnetic radiation by an electron beam passing next to an optical grating. Recently measurement of relatively intense power of such radiation was observed in the THz-regime [1]. To explain the high intensity and the super-linear dependence on current beyond a threshold it was suggested that the radiating device operated in the high gain regime, amplifying spontaneous emission (ASE) [1,2]. We contest this interpretation and suggest an alternative mechanism. According to our interpretation the device operates as a distributed feedback (DFB) laser oscillator, in which a forward going surface wave, excited by the beam on the grating surface, is coupled to a backward going surface wave by a second order Bragg reflection process. This feedback process produces a saturated oscillator. We present theoretical analysis of the proposed process, which fits the reported experimental results, and enables better design of the radiation device, operating as a Smith-Purcell DFB laser. [1] A.Bakhtyari, J.E.Walsh, J.H.Brownell, Phys.Rev. ·1065 006503 (2002). [2] H.L. Andrews, C.A. Brau, Phys.Rev. ST-AB 7, 070701 (2004). |
|||