Author: Gao, J.
Paper Title Page
TUYAT0104 CEPC Booster Lattice Design 61
 
  • D. Wang, X. Cui, J. Gao, D. Ji, M. Li, Y.D. Liu, C. Meng, Y.M. Peng, C.H. Yu, J.Y. Zhai, Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The CEPC booster provides electron and positron beams to the collider at different energies. The newest booster design is consistent with the TDR higher luminosity goals for four energy modes. The emittance of booster is reduced significantly in order to match the lower emittance of collider in TDR. Both FODO structure and TME structure was studied for booster design. A lot of efforts are made to overcome the difficulty of error sensitivity for the booster and hence the dynamic aperture with errors can fulfill the requirements at all energy modes. Also, the combined magnets scheme (B+S) are proposed to minimize the cost for magnets and power supplies. The design status of CEPC booster in TDR including parameters, optics and dynamic aperture is discussed in this paper.  
slides icon Slides TUYAT0104 [10.620 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-eeFACT2022-TUYAT0104  
About • Received ※ 03 November 2022 — Revised ※ 02 February 2023 — Accepted ※ 08 February 2023 — Issue date ※ 17 February 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZAT0201 MDI Design for CEPC 77
 
  • S. Bai, J. Gao, H.Y. Shi, H. Wang, Y. Wang
    IHEP, Beijing, People’s Republic of China
 
  The Circular Electron Positron Collider (CEPC) is a proposed Higgs factory with center of mass energy of 240 GeV to measure the properties of Higgs boson and test the standard model accurately. Machine Detector Interface (MDI) is the key research area in electron-positron colliders, especially in CEPC, it is one of the criteria to measure the accelerator and detector design performance. In this paper, we will introduce the CEPC MDI layout and (Interaction Region) IR design, IR beam pipe design, thermal analysis and injection background etc on, which are the most critical physics problem.  
slides icon Slides TUZAT0201 [3.490 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-eeFACT2022-TUZAT0201  
About • Received ※ 28 November 2022 — Revised ※ 02 February 2023 — Accepted ※ 07 February 2023 — Issue date ※ 09 February 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZAS0101 Longitudinally Polarized Colliding Beams at the CEPC 97
 
  • Z. Duan, T. Chen, J. Gao, D. Ji, X.P. Li, D. Wang, J.Q. Wang, J.Q. Wang, Y. Wang, W.H. Xia
    IHEP, Beijing, People’s Republic of China
 
  Funding: NSFC Grant No. 11975252; National Key Program for S&T R&D Grant No. 2016YFA0400400 and 2018YFA0404300; Key Research Program of Frontier Sciences, CAS Grant No. QYZDJ-SSW-SLH004; YIPA CAS No. 2021012.
This paper reports the recent progress in the design studies of longitudinally polarized colliding beams for CEPC. The overall design concept is outlined, followed by more detailed descriptions of the polarized beam generation, polarization maintenance in the booster, and spin rotators in the collider rings.
 
slides icon Slides TUZAS0101 [7.310 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-eeFACT2022-TUZAS0101  
About • Received ※ 30 November 2022 — Revised ※ 06 February 2023 — Accepted ※ 08 February 2023 — Issue date ※ 15 February 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXAT0102 Issues Related to CEPC e+/e Injection 222
 
  • C. Meng, J. Gao, X.P. Li, G. Pei, D. Wang, J.R. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Circular Electron-Positron Collider (CEPC) is a 100 km ring collider as a Higgs factory. It consists of a double ring collider, a full energy booster, a Linac and several transport lines. The Linac is a normal conducting S-band and C-band linear accelerator and provide electron and positron beam at an energy up to 30 GeV with repetition frequency of 100 Hz. After a conventional positron source, there is a 1.1 GeV damping ring to reduce the emittance of positron beam. C-band accelerating structures are adopted to accelerate electron and positron beam from 1.1 GeV to 30 GeV. For Z mode, in order to obtain higher injection speed, the Linac operates in double-bunch acceleration mode. The physics design and dynamic simulation results of the Linac will be detailed present-ed in this paper.  
slides icon Slides THXAT0102 [9.082 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-eeFACT2022-THXAT0102  
About • Received ※ 30 November 2022 — Revised ※ 03 February 2023 — Accepted ※ 07 February 2023 — Issue date ※ 12 February 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXAS0101 Power Budgets and Performance Considerations for Future Higgs Factories 256
 
  • F. Zimmermann
    CERN, Meyrin, Switzerland
  • S.A. Belomestnykh, V.D. Shiltsev
    Fermilab, Batavia, Illinois, USA
  • M.E. Biagini, M. Boscolo
    LNF-INFN, Frascati, Italy
  • A. Faus-Golfe
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • J. Gao
    IHEP, Beijing, People’s Republic of China
  • M. Koratzinos
    PSI, Villigen PSI, Switzerland
  • B. List
    DESY, Hamburg, Germany
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • E.A. Nanni, P. Raimondi, T.O. Raubenheimer, J.T. Seeman
    SLAC, Menlo Park, California, USA
  • K. Oide
    DPNC, Genève, Switzerland
  • R.A. Rimmer, T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the European Union’s H2020 Framework Programme under grant agreement no. 951754 (FCCIS), and by Fermi Research Alliance, LLC, under contract No. De-AC02-07CH11359 with the US DoE.
A special session at eeFACT’22 reviewed the electrical power budgets and luminosity risks for eight proposed future Higgs and electroweak factories (CCC, CEPC, CERC, CLIC, FCC-ee, HELEN, ILC, and RELIC) and, in comparison, for a lepton-hadron collider (EIC) presently under construction. We report highlights of presentations and discussions.
 
slides icon Slides FRXAS0101 [1.291 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-eeFACT2022-FRXAS0101  
About • Received ※ 16 January 2023 — Revised ※ 04 February 2023 — Accepted ※ 08 February 2023 — Issue date ※ 10 February 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXAS0102 CEPC Accelerator TDR Status and AC Power Consumptions 262
 
  • J. Gao
    IHEP, Beijing, People’s Republic of China
 
  Funding: Thanks go to the funds from National Natural Science Foundation of China (Grant No. 11975252) and Key Research Program of Frontier Sciences, CAS(Grant No.QYZDJ-SSW-SLH004).
The discovery of the Higgs boson at Large Hadron Collider (LHC) of CERN in July 2012 raised new opportunities for a large-scale accelerator. The Higgs boson is the heart of the Standard Model (SM) and is at the center of many mysteries of universe. In September 2012, Chinese scientists proposed a 240 GeV Circular Electron Positron Collider (CEPC), having two large detectors for Higgs studies as a Higgs Factory and other topical researches. The 100 km tunnel of CEPC could also host a Super proton proton Collider (SppC) to reach energies above 100 TeV. CEPC Conceptual Design Report (CDR) has been released in Nov. 2018, and CEPC Technical Design Report (TDR) will be completed at the end of 2022. in this paper, CEPC Technical Design Report (TDR) status, upgrade possibilities and AC power consumption have been reported.
 
slides icon Slides FRXAS0102 [11.999 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-eeFACT2022-FRXAS0102  
About • Received ※ 21 December 2022 — Revised ※ 02 February 2023 — Accepted ※ 07 February 2023 — Issue date ※ 19 February 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)