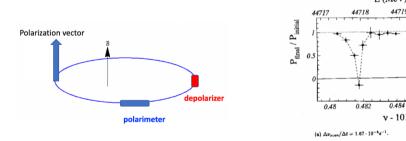
Longitudinally polarized colliding beams at CEPC

Zhe Duan

On behalf of CEPC Beam Polarization Working Group 2022. 09. 13

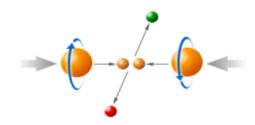
Beam polarization working group


- Physics design:
 - Tao Chen, Zhe Duan, Hongjin Fu, Jie Gao, Sergei Nikitin (BINP), Dou Wang, Jiuqing Wang, Yiwei Wang, Wenhao Xia(graduated)
- Polarized electron source & linac:
 - Xiaoping Li, Cai Meng, Jingru Zhang
- Polarimeter:
 - Shanhong Chen, Yongsheng Huang, Guangyi Tang

- Discussions with D. P. Barber (DESY) on polarization theories and simulations are illuminating.
- Helpful discussions with E. Forest (KEK) & D. Sagan (Cornell) on usage of Bmad/PTC are acknowledged.

Motivation of CEPC polarized beam program

Vertically polarized beams in the arc


- Beam energy calibration via the resonant depolarization technique
- Essential for precision measurements of Z and
 W properties
- At least 5% ~ 10% vertical polarization, for both
 e+ and e- beams

L. Arnaudon, et al., Z. Phys. C 66, 45-62 (1995).

Longitudinally polarized beams at IPs

- Beneficial to colliding beam physics programs at Z, W and Higgs
- Figure of merit: Luminosity * f(Pe+, Pe-)
- ~50% or more longitudinal polarization is desired, for one beam, or both beams

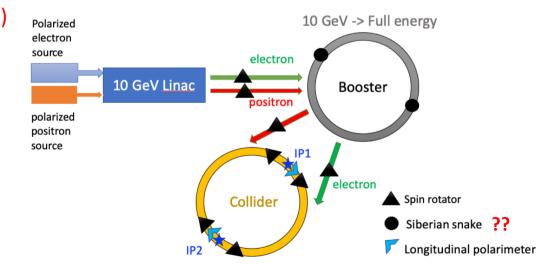
- Supported by National Key R&D Program 2018-2023 to design longitudinally polarized colliding beams at Z-pole.
- The study in this presentation is based on CEPC CDR lattice & parameters.
- Will be included as a Chapter in the Appendix in the CEPC TDR.

Self-polarization vs injection of polarized beams for the collider ring

Decay mode

$$- P(t) = \frac{P_{\text{ens,DK}}(1 - e^{-t/\tau_{\text{DK}}}) + P_{\text{inj}}e^{-t/\tau_{\text{DK}}},}{1 - \frac{1}{\tau_{DK}}} = \frac{1}{\tau_{BKS}} + \frac{1}{\tau_{\text{dep}}}, \frac{1}{\tau_{BKS}[s]} \approx \frac{2\pi}{99} \frac{E[\text{GeV}]^5}{C[\text{m}]\rho[\text{m}]^2},$$
$$- P_{\text{ens,DK}} \approx \frac{92\%}{1 + \tau_{BKS}/\tau_{\text{dep}}}$$

Top-up injection


•
$$P_{\mathrm{avg}} pprox rac{P_{\mathrm{ens,DK}}}{1 + au_{\mathrm{DK}}/ au_{\mathrm{b}}} + rac{P_{\mathrm{inj}}}{1 + au_{\mathrm{b}}/ au_{\mathrm{DK}}}$$
• If $au_b \gg au_{DK}$, then $P_{\mathrm{avg}} pprox P_{\mathrm{ens,DK}}$
• If $au_{DK} \gg au_b$, then $P_{\mathrm{avg}} pprox P_{\mathrm{inj}}$

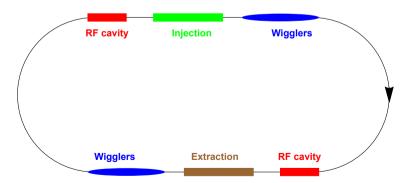
- In new e+e- circular colliders, a longer τ_b suggests a lower luminosity
- Injection of polarized beams is required to reach a high P_{avg} without sacrificing luminosity
 - Key: mitigate radiative depolarization (to achieve a longer $au_{
 m dep}$) to maintain $au_{DK} \gg au_b$
 - More challenging at higher beam energies at CEPC

CEPC CDR parameters	45.6 GeV (Z, 2T)	80 GeV (W)	120 GeV (Higgs)
$ au_b$ (hour)	2.5	1.4	0.43
$ au_{BKS}$ (hour)	256	15.2	2.0
$P_{\rm ens,DK}$ required to realize $P_{\rm avg} \ge 50\%$, if $P_{\rm inj} = 80\%$	0.6%	5%	11%

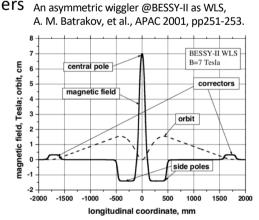
Longitudinal polarization @ CEPC

- In the injector: preparation and maintenance of highly polarized e- (e+) beam(s).
 - Polarized source: polarized e- gun (specs defined), polarized e+ source (preliminary study)
 - Booster: polarization maintenance (underway)
 - Transfer lines: ensure the matching of polarization directions (to be studied)
- In the collider ring:
 - spin rotators > longitudinal polarization[1] (done)
 - ensure $\tau_{DK} \gg \tau_b$, then $P_{\rm avg} \approx P_{\rm inj}$
 - Compton polarimeter[2] (under way)

[1] W. H. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2 [2] S. H. Chen et al., JINST 17, P08005, (2022)


Polarized e-/e+ source for > 50% polarization

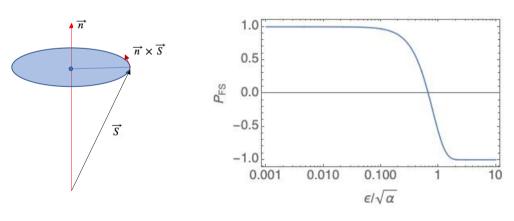
Polarized e- source is matured technology

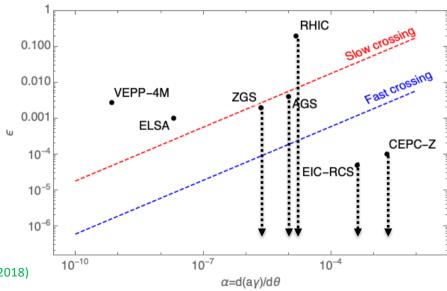

Parameter	ILC(TDR)	CLIC(3TeV)	CEPC	
Electrons/microbunch	2×10 ¹⁰	0.6×10^{10}	>0.94×10 ¹⁰	
Charge / microbunch	3.2nC	1nC	1.5nC	
Number of microbunches	1312	312	1	
Macropulse repetition rate	5	50	100	
Average current from gun	21μΑ	15μΑ	0.15μΑ	
Polarization	>80%	>80%	>80%	

Parameters of CEPC polarized electron source		
Gun type	Photocathode DC Gun	
Cathode material	Super-lattice GaAs/GaAsP	
HV	150-200kV	
QE	0.5%	
Polarization	≥85%	
Electrons/bunch	2×10 ¹⁰	
Repetition rate	100Hz	
Drive laser	780nm (\pm 20nm), 10 μ J@1ns	

- A polarizing/damping ring for e+, using high-field asymmetric wigglers [1]
 - Detailed design study is under way
 - Low-emittance lattice design w/ very strong wigglers

[1] Z. Duan et al., IPAC 2019, MOPMP012.




Tentative parameters

Parameter	Value
beam energy(GeV)	2.5
circumference(m)	240
wiggler total length(m)	22
$B_{+}/B_{-}(T)$	15/1.5
$U_0(\text{MeV})$	3.5
$\tau_{BKS}(s)$	20
rms energy spread	~ 0.003
natural emittance(nm)	~ 25
damping time(ms)	~ 1
momentum compaction factor	0.001
RF voltage(MV)	4.8
bunch length(mm)	12.6
bunch number	200
bunch spacing(ns)	4
beam current(mA)	< 600
bunch charge(nC)	< 2.5
beam store time(s)	>20
beam polarization before extraction	>58%

Polarization maintenance in synchrotron/booster

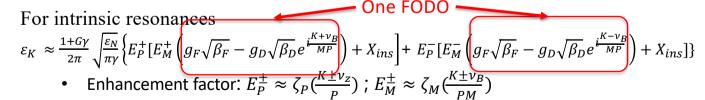
- $J_s = \vec{S} \cdot \vec{n}$ is an adiabatic invariant
- $v_0 \approx a\gamma_0$ and \vec{n}_0 changes during acceleration. When crossing a spin resonance, $|J_s|$ could vary due to non-adiabaticity, leading to depolarization described by Froissart-Stora formula[1]:
 - Two factors: spin resonance strength ε and acceleration rate $\alpha \sim 10^{-6} \frac{dE}{dt} \, [\text{GeV/s}] \, C \, [\text{km}]$
 - Polarization is maintained (ΔP < 1%) if
 - Fast crossing: $\frac{\epsilon}{\sqrt{\alpha}} \ll 0.06$
 - Slow crossing: $\frac{\epsilon}{\sqrt{\alpha}} \gg 1.82$, spin flip

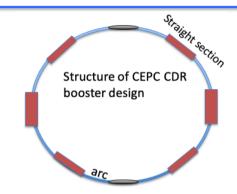
[1] Froissart and Stora, NIM 7, 297 (1960) [2] A. K. Barladyan, et al., PRAB 22, 112804, (2019)

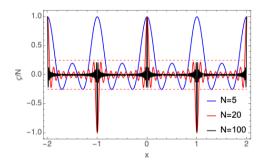
[3] S. Nakamura, et al., NIM A 411, 93 (1998) [4] T. Khoe et al., Part. Accel. 6, 213 (1975)

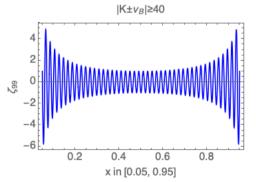
[5] Configuration Manual: Polarized Proton Collider at RHIC, 2006 [6] V. Ranjbar, et al., PRAB 21, 111003 (2018)

Spin resonance structure

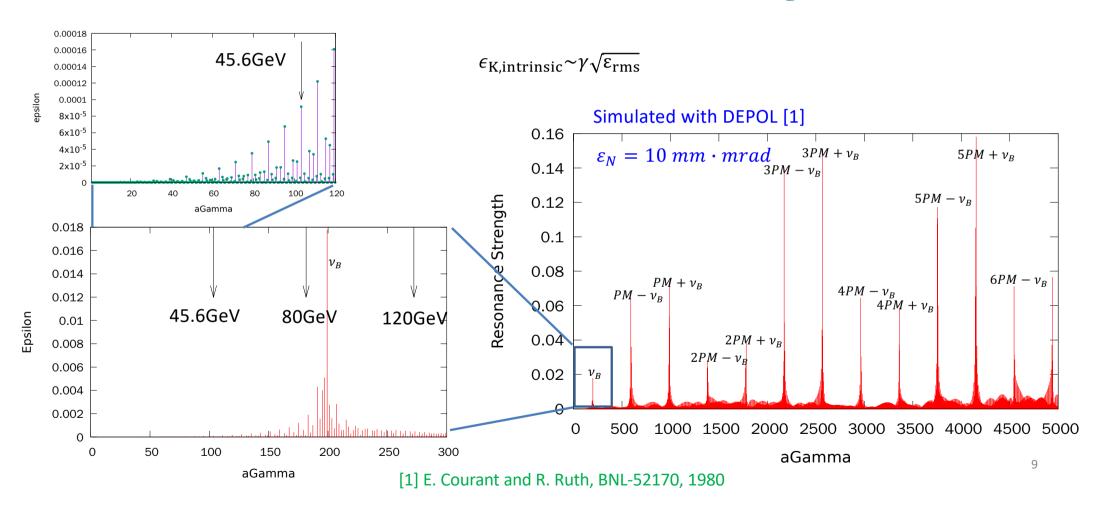

Parameter of CEPC CDR Booster	Value
P: number of periodicities	8
M: number of unit cells in each arc region (per period)	99
v_y : total betatron phase advance/(2 π)	261.2
ν_B : total betatron phase advance in arc regions/(2 π)	198


- PM = 792, arc sections take up > 80% circumference
- About k * 2π betatron phase advance in each straight section & arc section


	Super strong	Less strong	Regular
Imperfection resonance	$v_0 = nPM \pm [v_B]$	$v_0 = nP \pm [v_y]$	$v_0 = n$
Intrinsic resonance	$v_0 = nP \pm v_y$ near $nPM \pm [v_B]$	$v_0 = nP \pm v_y$	$v_0 = n \pm v_y$


 ϵ_{RING} = Enhancement Factor * $\epsilon_{arc\ cell}$ + $\epsilon_{straight\ sections}$

• Enhancement Factor : $\zeta_M(x) = \frac{\sin M\pi x}{\sin \pi x}$, when x = integer, $\zeta_M(x) = M$



Intrinsic spin resonance structure

CEPC CDR Booster : P = 8; M = 99; $v_B = 198$

Imperfection spin resonance structure

0.45

Simulated with SAD

Error setting in the lattice, rms vertical closed orbit is \sim 100 μm in this seed

	Dipole	Quadrupole	Sextupole
Transverse shift X/Y (μm)	100	100	100
Longitudinal shift Z (μm)	100	150	100
Tilt about X/Y (mrad)	0.2	0.2	0.2
Tilt about Z (mrad)	0.1	0.2	0.2
Nominal field	1e-3	2e-3	3e-3

CEPC energy range

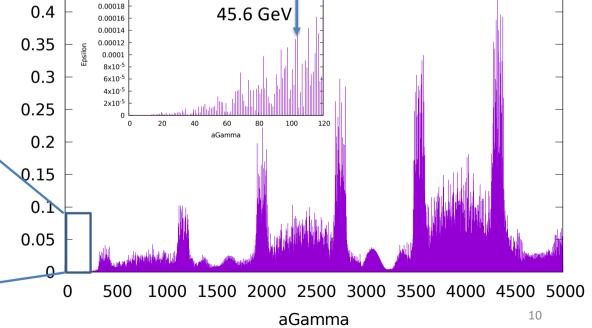
0.0035
0.003
0.0025
0.0025
0.0005
0.0001
0.0005

aGamma

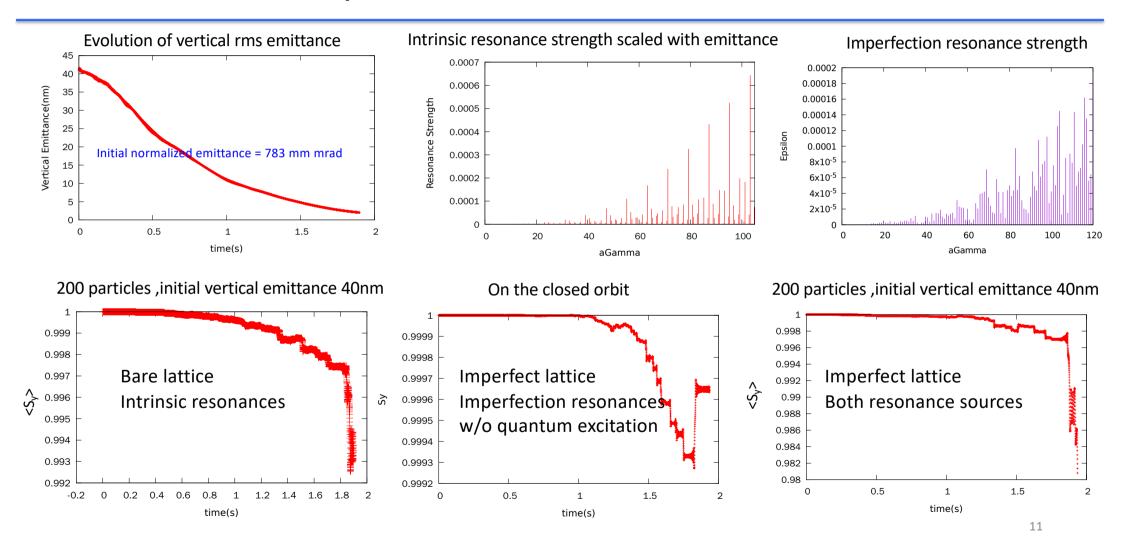
200

250

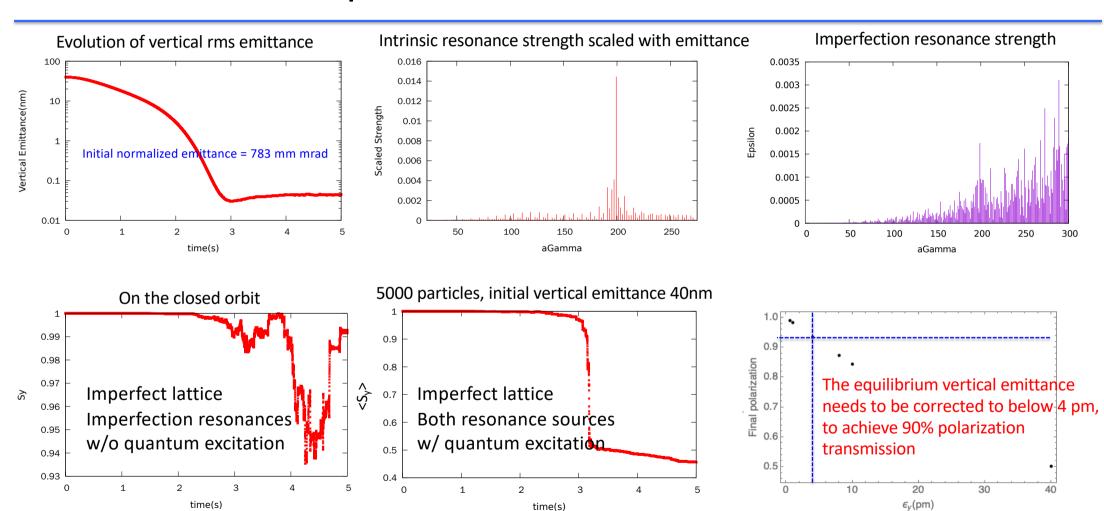
300


50

0

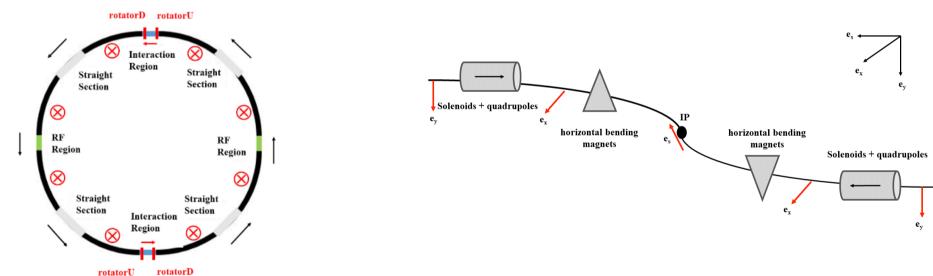

100

Calculated using one corrected lattice with error


$$\epsilon_K = -\frac{1 + a\gamma}{2\pi} \oint z'' e^{iK\theta} ds \approx -\frac{1 + a\gamma}{2\pi} \sum_i (z'_{i+1} - z'_i) e^{iK\theta_i}$$

Simulation of polarization transmission to 45.6 GeV

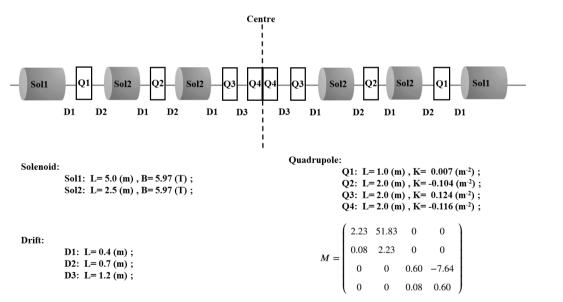
Simulation of polarization transmission to 120 GeV

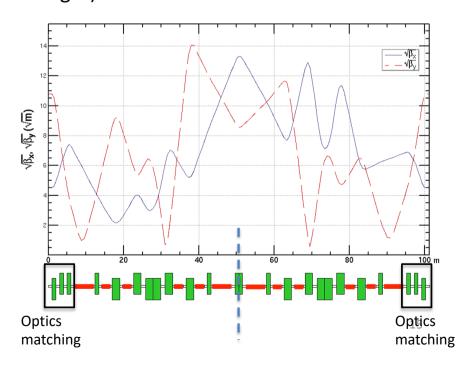

Short summary on polarization maintenance in booster

Findings:

- A large ramping rate of spin precession frequency α , due to the large circumference
- Spin resonances are generally weak, due to the high periodicity & cancellation
- Depolarization is negligible, in the fast crossing regime $\frac{\epsilon}{\sqrt{\alpha}} \ll 0.1$, up to 45.6 GeV
- The strong intrinsic resonance at ~ 87 GeV leads to large depolarization, and hurts the polarization transmission up to 120 GeV, potential mitigations:
 - A new lattice with the first strong intrinsic resonance larger than 120 GeV
 - Control the vertical equilibrium beam emittance to below ~ 4 pm (coupling ~ 0.1%)

Spin rotators in the collider ring at Z-pole

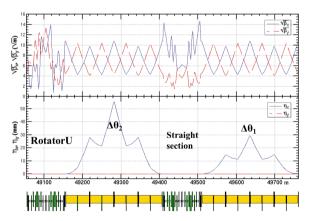

- Solenoid-based spin rotator + anti-symmetric arrangement [1,2,3] (W. Xia et al., RDTM (2022) doi:
 - 10.1007/s41605-022-00344-2)
 - Successfully implemented in the collider ring lattice
 - Now focus on Z-pole, extendable to cover higher beam energies using interleaved solenoid+dipole scheme [4]

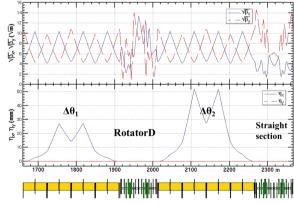

- [1] D. Barber, et al., A solenoid spin rotator for large electron storage rings. Part. Accel. 17 (1985) 243.
- [2] I. Koop, Longitudinally polarized electron in SuperB, eeFACT'08
- [3] M. Biagini et al., Super-B lattice studies, IPAC 2010, TUPEB004.
- [4] P. Chevtsov et al., Universal synchronous spin rotators for Electron-Ion Colliders, arXiv:1606.02419.

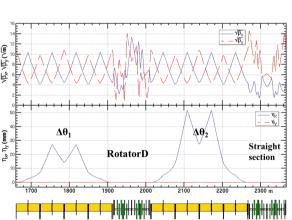
Spin rotators @ Z-pole

- Solenoid-based spin rotators
 - Integral solenoid field strength = 240 T m @ 45.6 GeV
 - Utilize the solenoid decoupling model developed for HERA [1]
 - Each solenoid section contains two modules (~100 m total length)

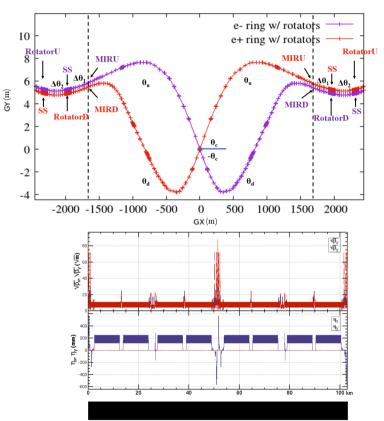
[1] D. Barber, et al., A solenoid spin rotator for large electron storage rings. Part. Accel. 17 (1985) 243.



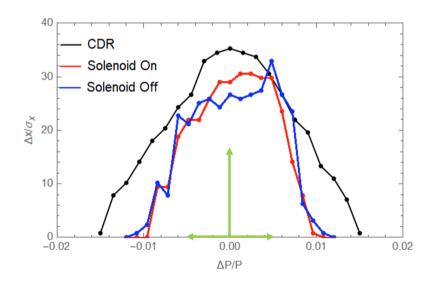

Spin rotators @ Z-pole


- Anti-symmetric arrangement [1,2,3]
 - $-\theta_c$ =2*16.5 mrad, rather than the ideal value 2*15.17 mrad
 - Angle compensation sections $\Delta\theta_1(1.39\text{mrad})$ and $\Delta\theta_2(2.65\text{mrad})$

$$a\gamma(\theta_u + \Delta\theta_1 + \Delta\theta_2) = -\frac{\pi}{2}$$
$$a\gamma(\theta_d + \Delta\theta_1) = \frac{\pi}{2}.$$


Straight sections (SS) w/o solenoids

- [1] I. Koop, Ideas for longitudinal polarization at the Z/W/H/top factory, eeFACT 2018.
- [2] S. Nikitin, Opportunities to obtain polarization at CEPC, IJMPA, 34, 194004 (2019)
- [3] S. Nikitin, Polarization issues in circular electron-positron super-colliders, IJMPA, 35 (2020).


Performance evaluation: orbital motion

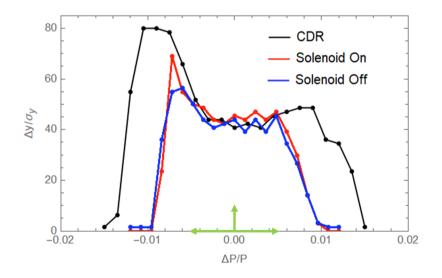
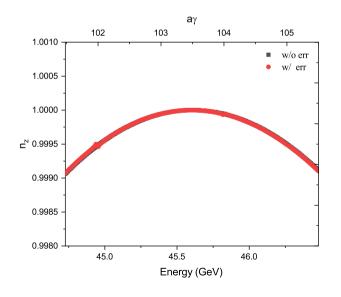
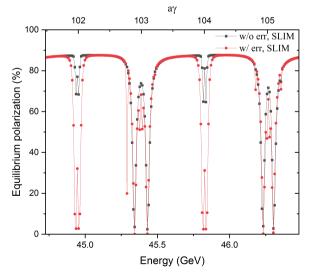

- Changes in optics parameters
 - Increase of circumference ~ 2.8 km, can be optimized.
 - Increase of integer betatron tunes by 18 units

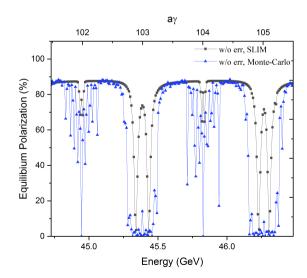
Table 1 The comparison of several key orbital parameters between the insertion scheme and the CDR lattice at the Z-pole

	CDR Lattice	Solenoids On	Solenoids Off
Tunes $\nu_x/\nu_y/\nu_z$	363.11/365.22/0.028	381.11/383.22/0.028	381.11/383.22/0.028
Emittances ϵ_x/ϵ_z	$0.18 \text{ nm}/0.886 \mu\text{m}$	$0.18 \text{ nm}/0.886 \mu\text{m}$	$0.18 \text{ nm}/0.886 \mu\text{m}$
Momentum compact factor α_p	1.11×10^{-5}	1.07×10^{-5}	1.07×10^{-5}
Circumference (m)	100016.35	102841.95	102841.95
SR energy loss per turn U_0 (MeV)	35.47	35.91	35.91
β -function at IPs $\beta_x^{\star}/\beta_y^{\star}$	0.2/0.001	0.2/0.001	0.2/0.001

Dynamic aperture shrinks a bit, but further optimization using more sextupole families could help recover.

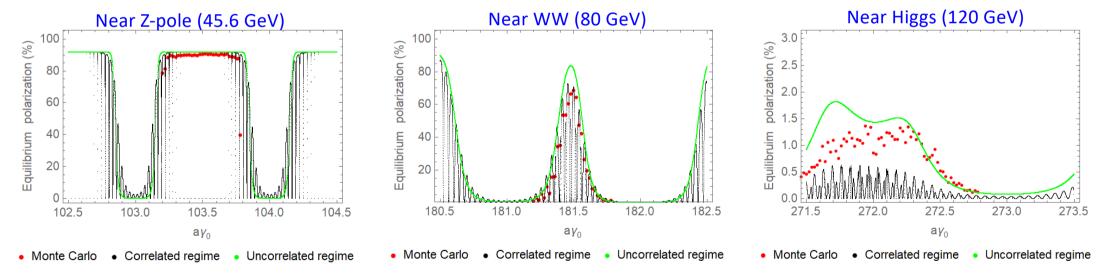


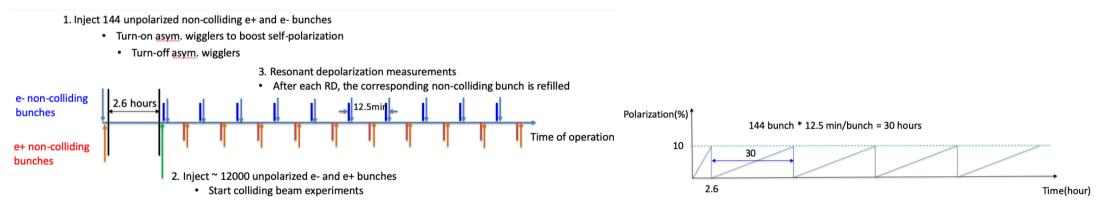

Performance evaluation: polarization


Bmad/PTC simulations show:

- Weak dependence of \hat{n}_0 over energy in the working energy range
- Errors in solenoid sections lead to enhanced but acceptable depolarization near first-order spin resonances
 - Rms relative field error of 5e-4 for solenoids & quadrupoles, roll error of 1e-4 for quadrupoles.
- A sufficient large safe region exists, that enables $\tau_{DK} \gg \tau_b$ thus $P_{\rm avg} \approx P_{\rm inj}$, when higher-order spin resonances are also considered

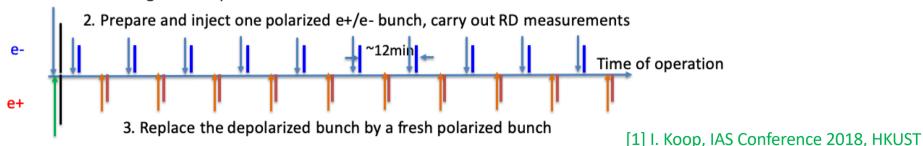
$$-P_{\rm avg} \approx P_{\rm inj}/(1+\frac{92\%}{P_{\rm eq}}\frac{\tau_b}{\tau_{BKS}})$$
, $\tau_b \sim 2$ hours, $\tau_{BKS} \sim 260$ hours, if $P_{\rm eq} = 7\%$, then $P_{\rm avg} \approx P_{\rm inj}/1.1$




Influence of machine imperfections

- Monte-Carlo simulations [1] with BMAD/PTC of an imperfect lattice seed after dedicated orbit & optics correction[2] to reach the desired orbital performance.
 - Assumed vanishing BPM offset, the rms closed orbit is < 50 μ m. (Study of more conservative setting is under way.)
 - Detector solenoids & anti-solenoids not included.
- Radiative depolarization due to machine errors becomes much severe at higher energies like 120
 GeV, dedicated "closed-orbit harmonic spin matching" [3] looks mandatory as a potential mitigation.

Implications for resonant depolarization application


- Scenario 1: using self-polarization [1]
 - Asymmetric wigglers are required to boost self-polarization build-up at Z-pole, not needed at W
 - ~100 non-colliding bunches at Z-pole, depolarize and refill one every ~ 10 min
 - ~2 hours with wigglers on to polarize non-colliding bunches, not for physics data taking
 - Very short lifetime ~15 min limited by the 6D dynamic aperture, considering the energy spread & bunch length increase w/ wigglers[2]
 - A much smaller bunch charge for RD -> worse statistical error of polarimeter

- [1] Polarization and Center-of-mass Energy Calibration at FCC-ee, arXiv:1909.12245, 2019.
- [2] K. Oide, FCC-ee Optics meeting 2022/08/04

Implications for resonant depolarization application

- Scenario 2: Injection of polarized e+/e- bunches
 - Source
 - Polarized e- gun
 - Prepare the polarized e+ bunch in the positron damping ring
 - Use the ~6 min vacancy of injector for filling colliding e+/e- bunches
 - 10%~20% self-polarization within 5 min -> $\tau_{DK} \leq 20$ min, do-able with addition of moderate-strength asymmetric wigglers, or using higher-field dipoles and/or higher beam energy
 - Acceleration in the booster could well preserve the polarization, without additional hardware.
 - This approach is not hindered by the problems of Scenario 1, and directly measure the energies of colliding bunches
 - Pave the way for alternative beam energy measurement scheme, like the "beam free-precession" concept[1].
- 1. Inject ~ 12000 polarized e- and unpolarized e+ bunches
 - · Start colliding beam experiments

Summary

- First-order issues to realize longitudinal polarized colliding beams at CEPC-Z (45.6 GeV) have been addressed
 - Beam polarization can be well preserved in the booster, without additional hardware
 - Spin rotators implemented in the collider ring, shows promising performance
 - This also provides an alternative scenario for resonant depolarization applications
- The current studies will be extended to higher beam energies, for example CEPC-Higgs (120 GeV), many issues to be solved
 - Polarization maintanance in the booster
 - Spin rotator design in the collider ring
 - Radiative depolarization due to machine imperfections in the collider ring
- There will be 3 talks detailing CEPC polarization studies in the forthcoming EPOL 22 Workshop WP1.

Thank you for your attention!