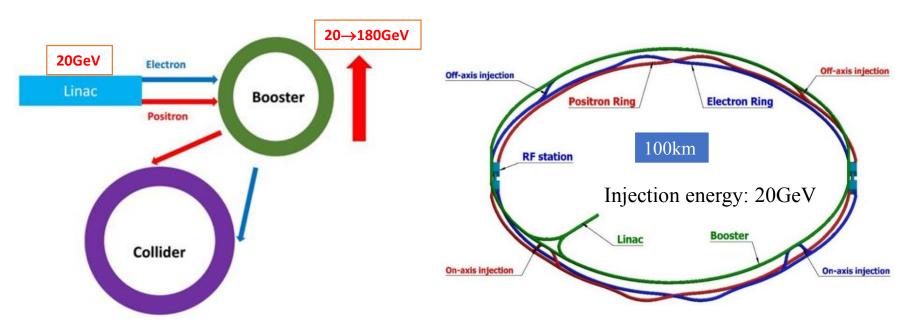


Institute of High Energy Physics Chinese Academy of Sciences

rebilleo noriteos norteelE reluerto

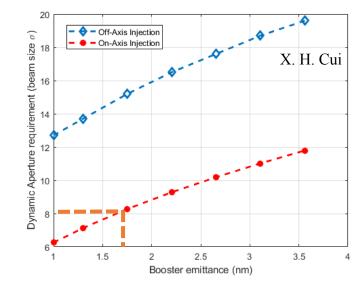

CEPC booster lattice design

Dou Wang (IHEP)

on behalf of CEPC AP group

The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022), Sep. 12-16, 2022. INFN-LNF.

CEPC injector chain



- 20 GeV linac provides electron and positron beams for booster.
- Top up injection for collider ring $\sim 3\%$ current decay
- Booster is in the same tunnel as collider ring, above the collider ring, bypass in IR.
- Budget for transfer efficiency **90%**: 95% for booster + 95% for transport lines.
- Beam current threshold in booster is limited by RF system.
- Feedback systems (Transverse & longitudinal) are need to damp the instability at low energy.

Requirement update for booster

Collider ring	Higgs (CDR)	Higgs (TDR)
Number of IPs	2	2
Energy (GeV)	120	120
Circumference (km)	100	100
SR loss/turn (GeV)	1.73	1.8
Half crossing angle (mrad)	16.5	
Piwinski angle	3.48	5.94
N_e /bunch (10 ¹⁰)	15.0	13.0
Bunch number	242	268
Beam current (mA)	17.4	16.7
SR power /beam (MW)	30	30
Bending radius (km)	10.7	10.2
Momentum compaction (10 ⁻⁶)	11.1	7.1
$\beta_{IP} x/y (m)$	0.36/0.0015	0.3/0.001
Emittance x/y (nm)	1.21/0.0024	0.64/0.0013
Transverse σ_{IP} (um)	20.9/0.06	14.0/0.036
$\xi_x/\xi_y/\mathrm{IP}$	0.018/0.109	0.015/0.11
$V_{RF}(\text{GV})$	2.17	2.20
f_{RF} (MHz) (harmonic)	650 (21682	20)
Nature bunch length σ_z (mm)	2.72	2.3
Bunch length σ_z (mm)	4.4	4.1
Energy spread (%) (SR/BS)	0.1/0.134	0.1/0.17
Energy acceptance requirement (%)	1.35	1.6
Energy acceptance by RF (%)	2.06	2.2
Lifetime due to beamstrahlung (min)	80	40
Lifetime (min)	25	20
<i>F</i> (hour glass)	0.89	0.9
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.93	5.0

 Horizontal DA requirement of collider ring due to injection

Booster emittance @120 GeV
<1.7nm (3.6nm in CDR)

The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

Booster TDR optics

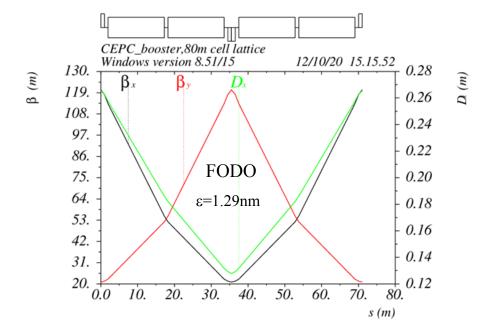
(m)

Ω

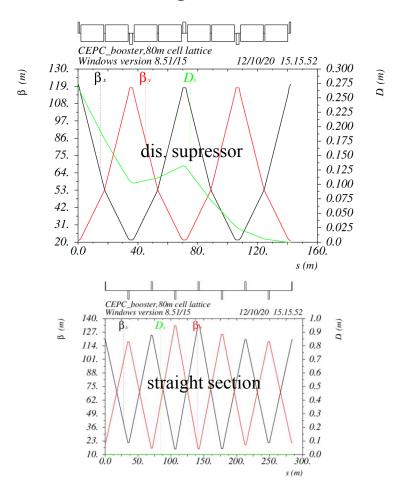
2

- TME like structure (cell length=78m)
- Interleave sextupole scheme
- Emittance@120GeV=1.26nm
- CEPC_booster,80m cell lattice Windows version 8.51/15 22/03/21 14.18.39 275 0.300 β (m) D_x 0.275 250. 0.250 225. CEPC_booster,80m cell lattice 0.225 200. Windows version 8.51/15 19/03/21 15.02.05 0.200 250.0 0.26 175. Dispersion sup. 0.175 β (m) D(m)B_x B_v D_x 150. 0.150 0.25 227.5 0.125 125. 0.24 0.100 100. 205.0 0.075 0.23 75. 0.050 50. 182.5 0.025 0.22 25. 0.0 0.0 20. 0.21 40. 60. 80. 100. 160.0 Arc cell s (m) 0.20 137.5 CEPC booster,80m cell lattice 0.19 Windows version 8.51/15 22/03/21 14.18.39 350. 0.300 115.0 0.18 β (m) Half ring 0.275 315. 0.250 0.17 92.5 280. 0.225 245. 0.16 0.200 70.0 210. 0.175 0.15 175. 0.150 47.5 0.14 0.125 140. 0.100 105. 25.0 0.13 0.075 30. 40. 0.0 10. 20. 50. 60. 70. 80. 70. 0.050 35. 0.025 s (m) 0.0 0.0 0.0 15. 30. 45. $\delta_{E} p_{0} c = 0.00000$ s (m) $\delta_{E} p_{0} c = 0.00000$ Table name = TWISSTable name = TW[*10**(3)] The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders

(eeFACT2022)


- Overall idea: uniform distribution for the Q
- Combined magnet (B+S) scheme possible
- Phase advance/cell: 100° (H) / 28° (V)

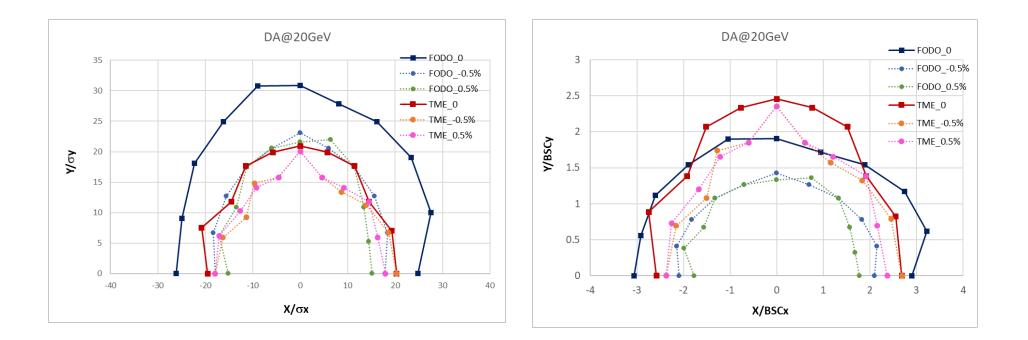
4


D. Wang, C. H. Yu, Y. M. Peng...

Booster alternative optics

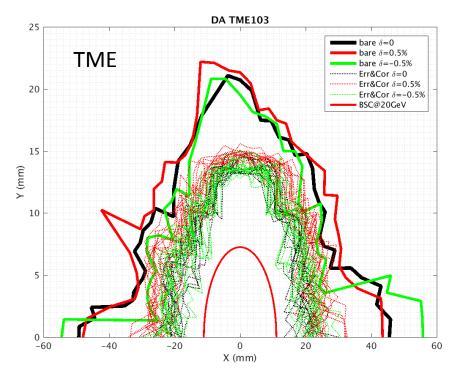
- FODO structure (cell length=70m)
- 90°/90° phase advance
- Non-interleave sextupole scheme
- Similar structure as CDR

• Emittance@120GeV=1.29nm



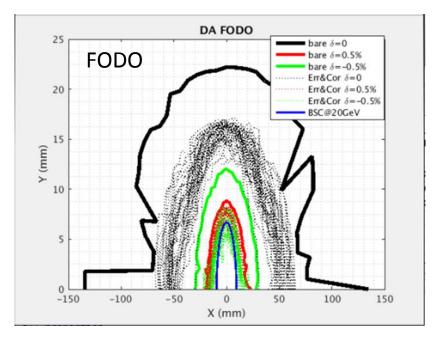
The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

DA results @ 20GeV


- Booster energy: 20GeV~180GeV
- 20GeV: BSC_{xy}= $(4\sigma_{xy}+5mm)*2$

- Inj. emittance from Linac:10nm
- Energy spread from Linac: 0.16%

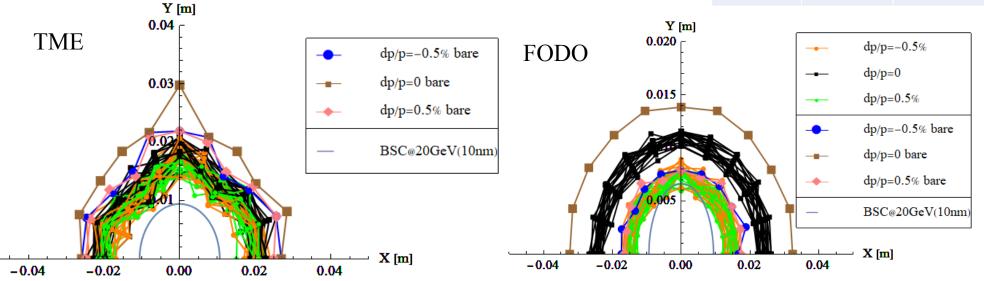
DA results with errors and correction (w/o multipoles)


	Dipole	Quadrupole	Sextupole
Transverse shift X/Y (μm)	100	100	100
Longitudinal shift Z (µm)	100	150	100
Tilt about X/Y (mrad)	0.2	0.2	0.2
Tilt about Z (mrad)	0.1	0.2	0.2
Nominal field	1e-3	2e-4	3e-4

	Accuracy	Tilt	Gain	Offset w/
	(m)	(mrad)		BBA(mm)
BPM(10Hz)	1e-7	10	5%	30e-3

➤ error correction (w/o SR effect)

- Orbit correction
- Optics correction


The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

D. H. Ji

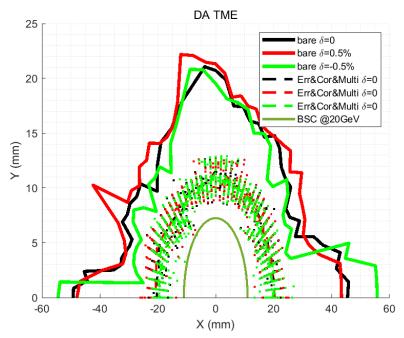
Multipole errors @ 20GeV

- Multipole errors only
- Multipole errors can not be corrected
- TME is chosen as the baseline for TDR.

dipole	quadrupole	sextupole
$B1/B0\leq 2{\times}10^{-4}$		
$B2/B0\leq 3{\times}10^{-4}$	$B2/B1 \leq 3{\times}10^{\text{-}4}$	
$B3/B0 \le 2{\times}10^{\text{-5}}$	$B3/B1 \leq 1{\times}10^{\text{-4}}$	$B3/B2{\leq}~1{\times}10^{\text{-3}}$
$B4/B0 \leq 8{\times}10^{\text{-5}}$	$B4/B1 \le 1{\times}10^{\text{-}4}$	$B4/B2\leq 3{\times}10^{4}$
$B5/B0 \le 2{\times}10^{-5}$	$B5/B1 \le 1{\times}10^{\text{-4}}$	$B5/B2 \le 1{\times}10^{\text{-3}}$
$B6/B0 \leq 8{\times}10^{\text{-5}}$	$B6/B1 \le 5{\times}10^{\text{-5}}$	$B6/B2 \le 3{\times}10^{-4}$
$B7/B0 \leq 2{\times}10^{\text{-5}}$	$B7/B1 \le 5 \times 10^{\text{-5}}$	$B7/B2 \le 1{\times}10^{\text{-}3}$
$B8/B0 \leq 8{\times}10^{-5}$	$B8/B1 \le 5{\times}10^{\text{-5}}$	$B8/B2 \le 3{\times}10^{-4}$
$B9/B0 \le 2{\times}10^{\text{-5}}$	$B9/B1 \le 5{\times}10^{\text{-5}}$	$B9/B2\leq 1{\times}10^{\text{-3}}$
$B10/B0 \leq 8{\times}10^{\text{-5}}$	$B10/B1 \leq 5{\times}10^{\text{-5}}$	$B10/B2 \leq 3{\times}10^{-4}$

DA results with errors and correction

	Dipole	Quadrupole	Sextupole
Transverse shift X/Y (μm)	100	100	-
Longitudinal shift Z (µm)	100	150	-
Tilt about X/Y (mrad)	0.2	0.2	-
Tilt about Z (mrad)	0.1	0.2	-
Nominal field	1e-3	2e-4	3e-4


• Include multipole errors

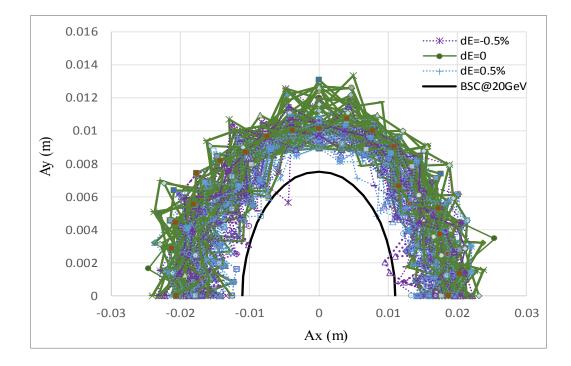
dipole	quadrupole
$B1/B0 \le 2 \times 10^{-4}$	
$B2/B0 \le 5 \times 10^{-4}$	$B2/B1 \le 3 \times 10^{-4}$
$B3/B0 \le 2 \times 10^{-5}$	$B3/B1 \le 2 \times 10^{-4}$
$B4/B0 \le 8 \times 10^{-5}$	$B4/B1 \le 1 \times 10^{-4}$
$B5/B0 \le 2 \times 10^{-5}$	$B5/B1 \le 1 \times 10^{-4}$
$B6/B0 \le 8 \times 10^{-5}$	$B6/B1 \le 5 \times 10^{-5}$
$B7/B0 \le 2 \times 10^{-5}$	$B7/B1 \le 5 \times 10^{-5}$
$B8/B0 \le 8 \times 10^{-5}$	$B8/B1 \le 5 \times 10^{-5}$
$B9/B0 \le 2 \times 10^{-5}$	$B9/B1 \le 5 \times 10^{-5}$
$B10/B0 \leq 8 \times 10^{-5}$	$\text{B10/B1} \leq 5{\times}10^{\text{-5}}$

	Accuracy	Tilt	Gain	Offset w/
	(m)	(mrad)		BBA(mm)
BPM(10Hz)	1e-7	10	5%	30e-3

- \succ Orbit & Dispersion Correction (100 seeds)
 - Response Matrix (RM)+SVD
- > Optics Correction (93 seeds)
 - RM + LOCO
- > DA track in AT @20GeV

RMS	TME
Orbit (mm)	0.062/0.071
Beta Beating(%)	0.16/0.1
∆ Dispersion(mm)	1.2/3.3

The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)


D. H. Ji

DA@20GeV

Dou Wang, Daheng Ji

- Tracking by SAD (2500 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (without taper)
- Include SR damping & fluctuation

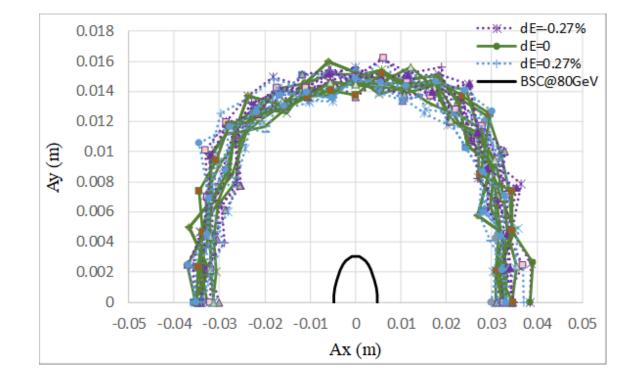
- On axis injection from Linac to booster
- BSC definition (ε_{inj} =10nm): BSC_{x,y} = 2×(4· $\sigma_{x,y}$ +5mm)
- Energy acceptance: $3 * \delta_{inj} = 0.48\%$

DA@45GeV

Dou Wang, Daheng Ji

- Tracking by **SAD** (1200 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (without taper)
- Include SR damping & fluctuation

- Off axis injection from booster to collider
- BSC definition ($\varepsilon_x = 0.18$ nm, $\varepsilon_y = \varepsilon_x *1\%$): BSC_{x,y} = 2×(4· $\sigma_{x,y}$ +5mm)
- Energy acceptance: $4*\delta=0.15\%$

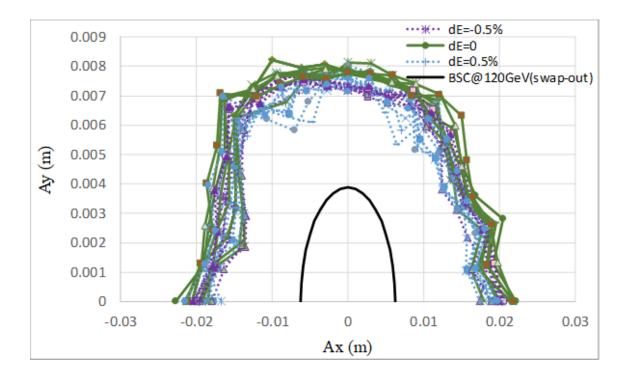

The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

DA@80GeV

Dou Wang, Daheng Ji

- Tracking by **SAD** (500 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (without taper)
- Include SR damping & fluctuation

- Off axis injection from booster to collider
- BSC definition ($\varepsilon_x = 0.56$ nm, $\varepsilon_y = \varepsilon_x *1\%$): BSC_{x,y} = 2×(5· $\sigma_{x,y}$ +3mm)
- Energy acceptance: $4*\delta=0.27\%$

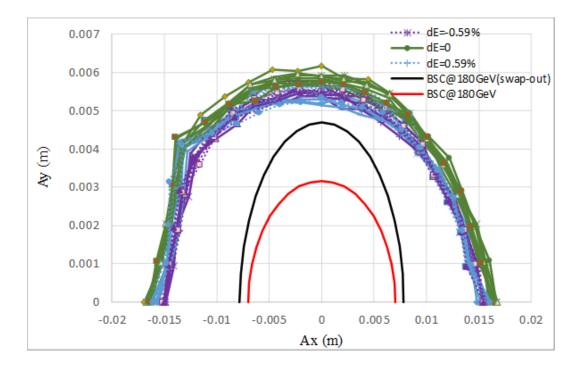


DA@120GeV

Dou Wang, Daheng Ji

- Tracking by **SAD** (250 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (without taper)
- Include SR damping & fluctuation

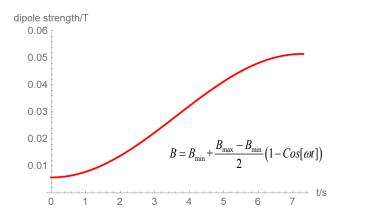
- On axis injection from booster to collider
- BSC definition ($\varepsilon_x = 1.26$ nm, $\varepsilon_y = \varepsilon_x * 1\%$): $BSC_x = 2 \times (6 \cdot \sigma_x + 3mm)$ $BSC_y = 2 \times (39 \cdot \sigma_y + 3mm)$
- Energy acceptance: $5*\delta=0.5\%$

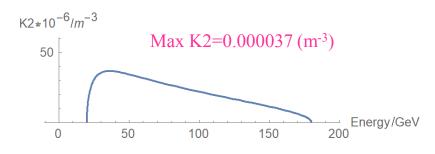


DA@180GeV

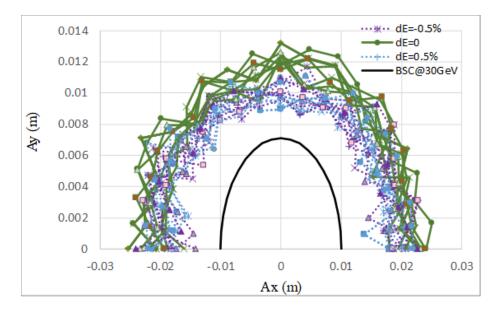
Dou Wang, Daheng Ji

- Tracking by **SAD** (150 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (with taper)
- Include SR damping & fluctuation


- Keep possibility for on axis injection to collider
- BSC definition ($\varepsilon_x = 2.84$ nm, $\varepsilon_y = \varepsilon_x *1\%$): - $BSC_x = 2 \times (6 \cdot \sigma_x + 3mm) BSC_y = 2 \times (50 \cdot \sigma_y + 3mm)$
 - $-BSC_{x,y} = 2 \times (5 \cdot \sigma_{x,y} + 3mm)$
- Energy acceptance: $4*\delta=0.59\%$

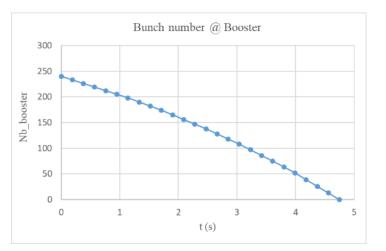

The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

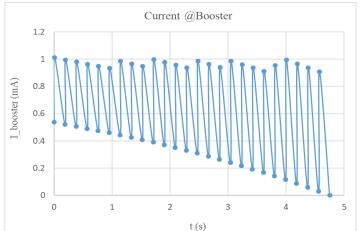
Eddy current effect


• Dedicated ramping curve to control the maximum K2.

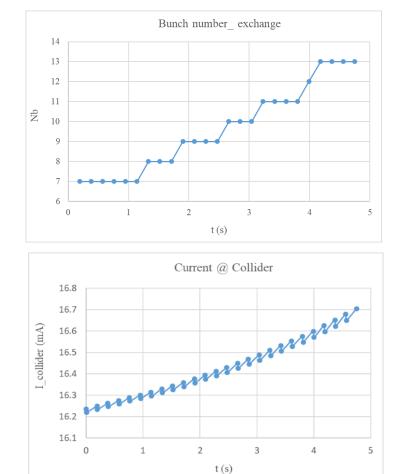
- Analytical estimation for eddy effect*
- K2 reaches max at 30GeV.

- Al beam pipe (round shape)
 - inner diameter: 55mm, thickness: 2mm
- Dynamic chromaticity is not corrected.
 - Sextupole field is attached to dipole
- DA tracking including eddy effect and error effects
- Independent sext. (~100) chromaticity adjustment

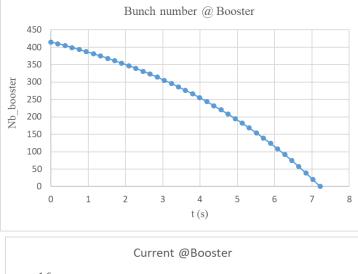

*Yuan Chen et al., Analytical expression development for eddy field and the beam dynamics effect on the CEPC booster, IJMPA, Vol. 36, No. 22 (2021) 2142010

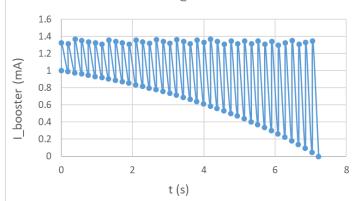

The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

Dou Wang, Yuemei Peng, Daheng Ji

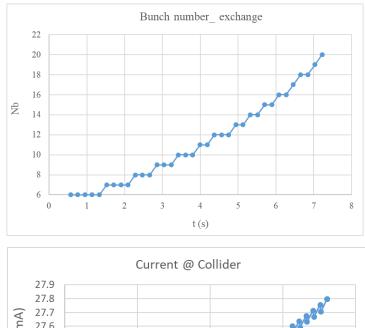

On-axis injection at Higgs energy

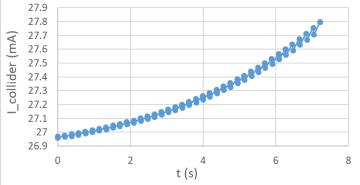
- Swap-out injection
- Current threshold in booster: 1A


- Current decay for collider: 3% (top up mode)
- 4 damping times to merge the bunches in booster

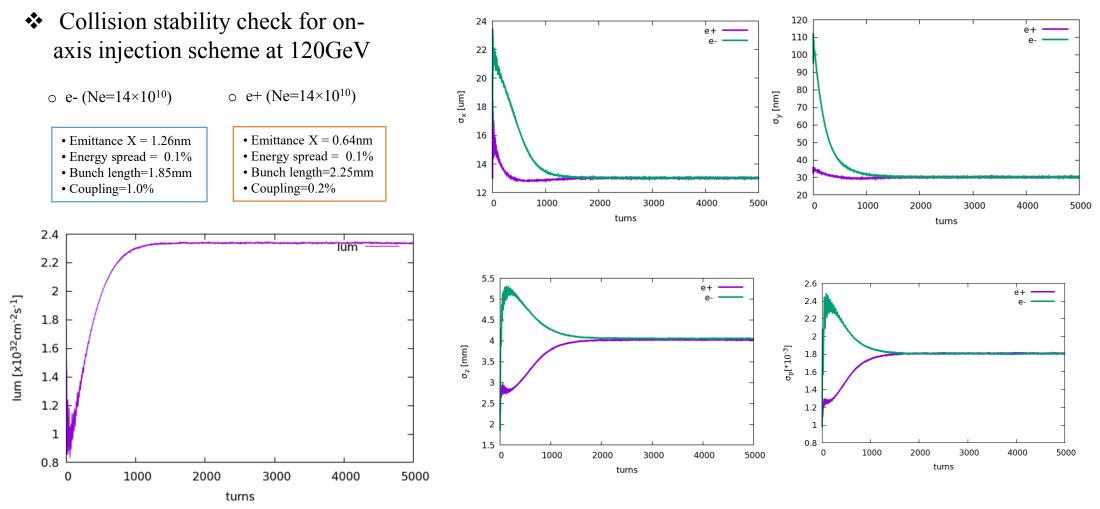


The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)


On-axis injection at Higgs energy (50MW upgrade)


- Swap-out injection
- Current threshold in booster: 1.4 A

- Current decay for collider: 3% (top up mode)
- Small upgrade for the RF power source



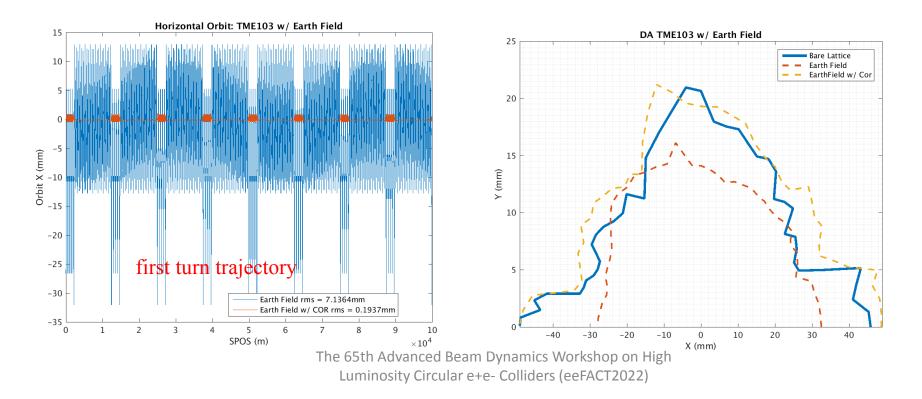
The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

Beam beam instability for on-axis injection

Yuan Zhang

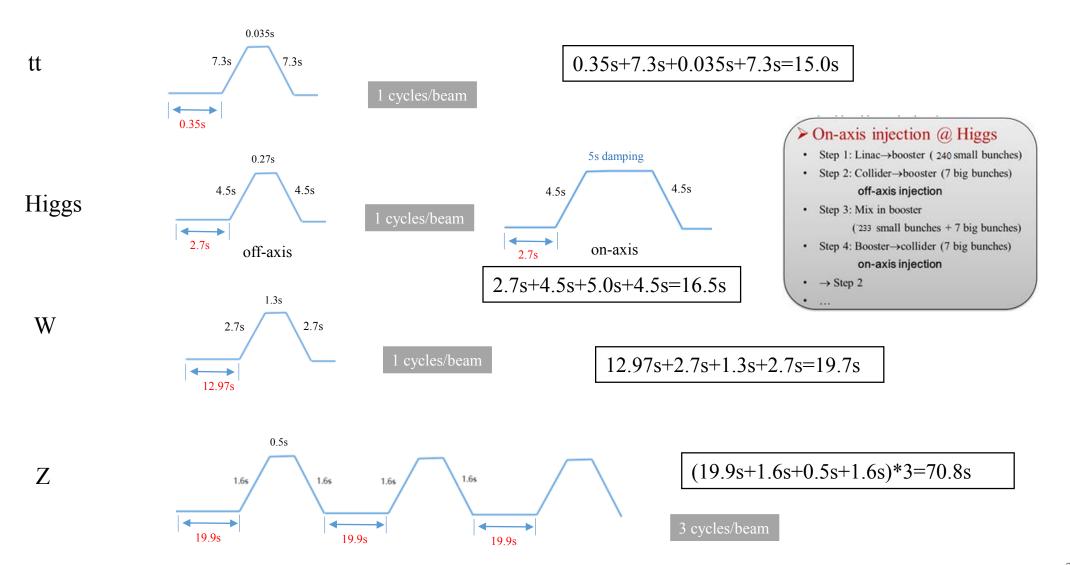
The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

Dipole reproducibility requirement@20GeV

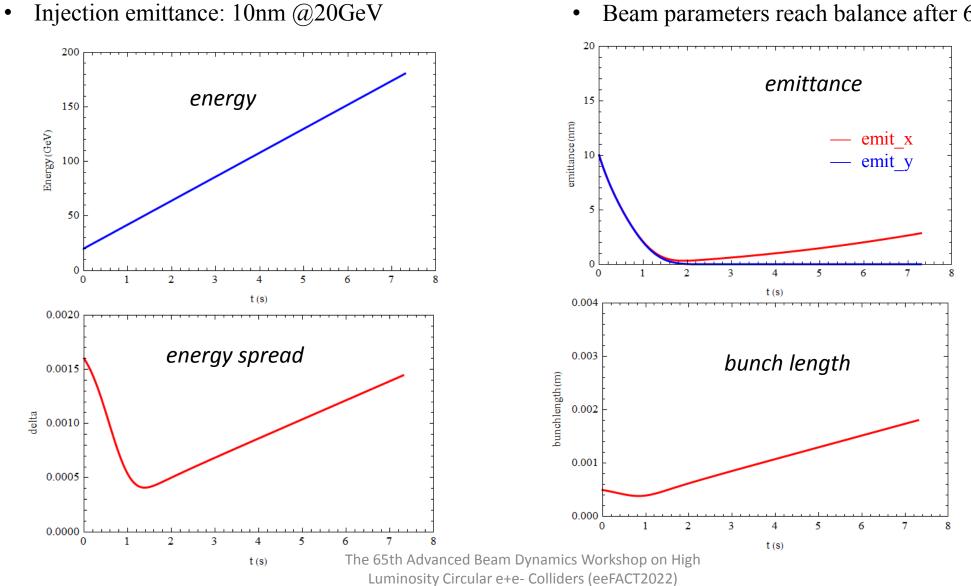

- Increase/decrease the strength of all the dipoles by the same amount.
- Evaluate the influence: working point, closed orbit, DA, energy acceptance
- Working point should not pass through the lower order resonance
- Small shrink for dynamic aperture
- Reproducibility requirement for dipoles: ~0.04%
- Stability requirement for power supply: ~0.01%
- Dipole field error tolerance slightly loser than 10GeV.

	original	+0.01%	-0.01%	+0.03%	-0.03%	+0.05%	-0.05%
nux	321.271	321.234	321.308	321.158	321.383	321.084	321.458
nuy	117.193	117.166	117.220	117.112	117.274	117.058	117.328
$\Delta x (um)$	0	-26	26	-77	77	-130	130
DA (%)	100	95	100	97	95	97	95

Effect of earthfield @20GeV

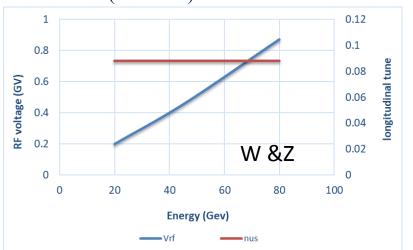

D. H. Ji, D. Wang

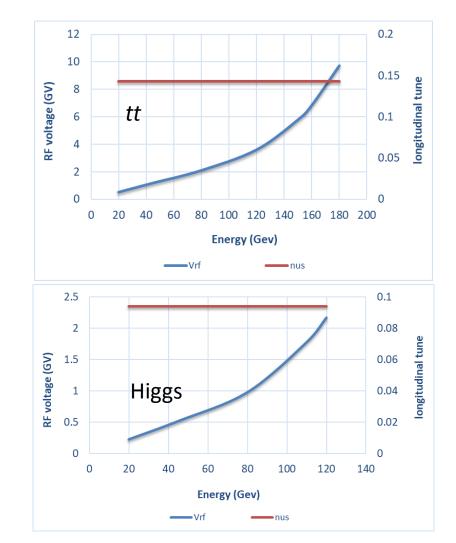
- $\sim 20\%$ vacuum pipe (drift) is exposed in earthfield directly.
- treat drifts as week dipole to simulate the effect of earthfield
- Assume earthfield: 0.6 gauss (simple model: perpendicular component only)
- Working point can be corrected by weaken the dipoles systematically (-0.07%)
- Earthfield problem can be solved by global orbit correction.


Booster ramping scheme

Dou Wang, Xiaohao Cui

The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

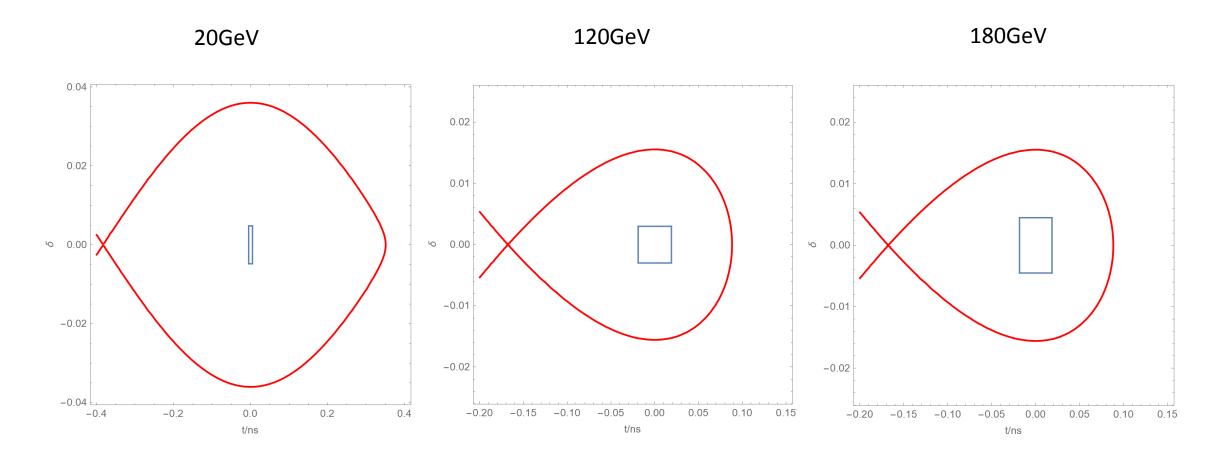

Beam parameter evolution



Beam parameters reach balance after 60GeV.

RF ramping curve

- Different RF ramping curve for each energy mode (constant vs)
 - vs for *tt*: 0.14
 - vs for Higgs: 0.094
 - vs for W & Z: 0.088
- Max RF voltage @*tt* determined by longitudinal quantum lifetime & DA.
 - $\eta_{\rm RF}$: ~ 12 × δ
 - VRF (180GeV)=9.8GV



The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

Longitudinal acceptance

• ± 3 times of sigma for the longitudinal beam size

Optics parameter comparison

D. H. Ji, W. Kang

Lattice	FODO 0 (CDR)	FODO 1	TME (combine magnets)
Emittance X (nm) @120GeV	3.57	1.29	1.26
Momentum compaction (×10 ⁻⁵)	2.44	1.18	1.12
Tunes	[263.201/261.219]	[353.180/353.280]	[321.271/117.193]
Quad amount	2110	2816	3458
Quad Strength (K1L rms)	0.0383	0.0407	0.0259
Sext amount	512	896	96
Sexts Strength (K2L rms)	0.179	0.4091	0.0492
H Corrector	1053	1408	1218
V Corrector	1054	1408	2240
BPM	2108	2816	3458
Power consumption of magnets@120GeV (MW) (max/average)	15/6		12.1/4.8

Magnets' cost of TME is lower than FODO 1

- Less independent sextupole for TME
- Quadrupole strength of TME is lower

- > TME is less sensitive to error effects
 - Weaker quad/sex strength
- ➤ TME has lower magnets' power consumption

Booster power consumption @Higgs

- The technical systems with changes are considered.
- The power consumption of TDR is lower than CDR with much lower emittance.

Technical system	CDR [MW]		TDR [MW]		Budget increment [MW]	
	max	average	max	average	max	average
Magnet system	15	6	12.1	4.8	-2.9	-1.2
Power supply	10.04	4.02	6.62	2.65	-3.42	-1.37
RF system						
RF power source	3.95	0.15	4.45	1.44	0.5	1.29
Beam Instrumentation	0.6	0.6	0.72	0.72	0.12	0.12
total		20.97		19.81	-5.7	-1.16

Booster power consumption @Z

- The technical systems with changes are considered.
- The power consumption of TDR almost same as CDR with much lower emittance.

Technical system	CDR [MW]		TDR [MW]		Budget increment [MW]	
	max	average	max	average	max	average
Magnet system	2.14	1.28	1.72	0.69	-0.42	-0.59
Power supply	2.48	0.99	1.88	0.75	-0.6	-0.24
RF system						
RF power source	0.5	0.04	1.13	0.084	0.63	0.044
Beam Instrumentation	0.6	0.6	0.72	0.72	0.12	0.12
total		9.7		9.034	-0.27	-0.666

Booster TDR parameters

Extraction

Beam energy

Bunch number

- Injection energy: $10 \text{GeV} \rightarrow 20 \text{GeV}$
- Max energy: $120\text{GeV} \rightarrow 180\text{GeV}$

• Lower emittance – new lattice (TME)							Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81	
Lower children	IIC W			Maximum single bunch current	μΑ	3.0	2.1	61.2	2.2	2.4	2.42				
							Threshold of single bunch current	μΑ	91.5	70		22.16	9.57		
Injection		tt	H	W		Ζ	Threshold of beam current	mA	0.3	1		4	16		
Beam energy	GeV			20			(limited by RF system)	111/4				-			
Bunch number		35	268	1297	3978	5967	Beam current	mA	0.11	0.56	0.98	2.85	9.5	14.4	
Threshold of single bunch current	μΑ	5.79	4.20		3.92		Growth time (coupled bunch instability)	ms	16611	2359	1215	297.8	49.5	31.6	
Threshold of beam current (limited by coupled bunch instability)	mA	27					Bunches per pulse of Linac		1		1	1 2			
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9	Time for ramping up	S	7.3	4	.5	2.7	1.6		
Single bunch current	μΑ	3.4	2.3	2.4	2.65	2.69	Injection duration for top-up (Both beams)	s	30.0	23.3	32.8	39.4	141.6		
Beam current	mA	0.12	0.62	3.1	10.5	16.0	Injection interval for top-up	s	65	3	38	155	153	.5	
Growth time (coupled bunch instability)	ms	1690 358 67 19.4 12.5				12.5	Current decay during injection interval		3%						
Energy spread	%	0.016						0/	0.15	0.0		0.066 0.037			
Synchrotron radiation loss/turn	MeV	1.3					Energy spread	%	0.15		099				
Momentum compaction factor	10-5	1.12					Synchrotron radiation loss/turn	GeV	8.45	1.	.69	0.33	0.034		
Emittance	nm	0.035					Momentum compaction factor	10-5	1.12						
Natural chromaticity	H/V	-372/-269					Emittance	nm	2.83	1.	.26	0.56 0.19			
RF voltage	MV	531.0 230.2 200.0					Natural chromaticity	H/V	-372/-269						
Betatron tune v_x/v_y		321.23/117.18					Betatron tune v_x/v_y		321.27/117.19						
Longitudinal tune		0.14	0.0943	0943 0.0879			RF voltage	GV	9.7	2	.17	0.87	0.46		
RF energy acceptance	%	5.9	3.7	3.6			Longitudinal tune	0.	0.14		943	0.0879	0.0879		
Damping time	S	10.4					RF energy acceptance	%	1.78	1	.59	2.6	3.4		
Bunch length of linac beam	mm	0.5											879		
Energy spread of linac beam	%	0.16					Damping time	ms	14.2		7.6	100.0		-	
Emittance of linac beam	nm	10					Natural bunch length	mm	1.8 1.85 1.3 0			0.7	5		
							Full injection from empty ring	h	0.1	0.14	0.16	0.27	1.8	0.8	

*Diameter of beam pipe is 55mm for re-injection with high single bunch current @120GeV.

The 65th Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

Ζ

Off axis injection

45.5

3978

5967

Η

120

Off axis

injection

268

On axis

injection

261+7

tt

Off axis

injection

180

35

GeV

W

Off axis

injection

80 1297

Summary

- Booster energy range is enlarged in TDR. $(10 \text{GeV}/120 \text{GeV} \rightarrow 20 \text{GeV}/180 \text{GeV})$
- Update booster design with smaller emittance in TDR— support for CEPC high lum. scheme
 - TME structure with combined magnets (B+S)
 - DA with error effects fulfill the requirements
 - Booster parameters update consistent with CEPC TDR parameters at 4 energy
- 30GeV injection is under consideration for the cost saving.
 - The non-oriented silicon laminations for the iron dominated dipole magnet can be used at 30GeV.