Author: Skalyga, V.
Paper Title Page
MOWZO04 GISMO Gasdynamic ECR Ion Source Status: Towards High-Intensity Ion Beams of Superior Quality 13
 
  • I. Izotov, A. Bokhanov, E.M. Kiseleva, R.L. Lapin, V. Skalyga, S.S. Vybin
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: The work was supported by RFBR, grant #20-32-70002, and within the state assignment of the Ministry of Science and Higher Education of the Russian Federation No. 0035-2019-0002.
GISMO, a CW high-current quasi-gasdynamic ECR ion source, is under development at the IAP RAS. The quasi-gasdynamic confinement regime, featuring high plasma density (up to 1014 cm-3) and moderate electron temperature (~100 eV), allowed to extract pulsed beams of H+ and D+ ions with current of 450 mA and RMS emittance <0.07 pi mm mrad*. It has been already demonstrated that major benefits of quasi-gasdynamic confinement, previously tested in pulsed mode, are scalable to the CW operational mode. In first experiments at GISMO facility, the ion beams were extracted in pulsed mode from the CW plasma of ECR discharge due to technical limitations of cooling circuits. Proton beams with current up to 70 mA were achieved at extraction voltage of 40 kV. A new unique extraction system especially effective for the formation of high current density ion beams was developed.
* V. Skalyga, I. Izotov, S. Razin, A. Sidorov, S. Golubev, T. Kalvas, H. Koivisto, and O. Tarvainen. Review of Scientific Instruments 85, 02A702 (2014); https://doi.org/10.1063/1.4825074
 
slides icon Slides MOWZO04 [3.681 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOWZO04  
About • Received ※ 27 September 2020 — Accepted ※ 18 May 2021 — Issue date ※ 02 September 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZZO02 ECR Discharge in a Single Solenoid Magnetic Field as a Source of the Wide-Aperture Dense Plasma Fluxes 47
 
  • I. Izotov, A. Bokhanov, S. Golubev, M.Yu. Kazakov, S. Razin, R.A. Shaposhnikov, S.P. Shlepnev, V. Skalyga
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: The reported study was supported by RFBR, project #19-32-90079, and by Presidential Grants Foundation (Grant #MD-2745.2019.2)
Sources of dense plasma fluxes with wide aperture are extensively used in applied science, i.e. surface treatment, and as a part of neutral beam injectors. ECR discharge in a solenoidal magnetic field (i.e. with no magnetic mirrors for plasma confinement), sustained by a powerful radiation of modern gyrotrons is under consideration at IAP RAS as a possible alternative to widely used vacuum arc, RF and helicon discharges. The use of a high frequency radiation (37.5 GHz) allows to obtain a discharge at lower pressure, sustain almost fully ionized plasma with density more than 1013 cm-3, whereas the power on the level of several hundreds of kW allows one to create such a plasma in considerably large volume. In the present work fluxes of hydrogen plasma with the equivalent current density of 750 mA/cm2 and the total current of 5 A were obtained. A multi-aperture multi-electrode extraction system design capable of forming the non-divergent ion beam was developed with the use of IBSimu code.
 
slides icon Slides MOZZO02 [0.681 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOZZO02  
About • Received ※ 27 September 2020 — Revised ※ 30 January 2021 — Accepted ※ 13 May 2021 — Issue date ※ 18 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZO02 Electron Cyclotron Resonance Ion Source Related Research and Development Work at the Department of Physics, University of Jyväskylä (JYFL) 98
 
  • H.A. Koivisto, B.S. Bhaskar, A. Ikonen, T. Kalvas, S.T. Kosonen, R.J. Kronholm, M.S.P. Marttinen, O.P.I. Timonen, V. Toivanen
    JYFL, Jyväskylä, Finland
  • J. Angot, B.S. Bhaskar, T. Thuillier
    LPSC, Grenoble Cedex, France
  • I. Izotov, V. Skalyga
    IAP/RAS, Nizhny Novgorod, Russia
  • L. Maunoury
    GANIL, Caen, France
  • O.A. Tarvainen
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: The work has received funding from the Academy of Finland under the Academy of Finland Project funding (No. 315855) and from University Grenoble Alps under EMERGENCE-project.
Recent research work of the JYFL ion source team covers multi-diagnostic studies of plasma instabilities, high-resolution plasma optical emission spectroscopy, ion current transient measurements to define the total life-time of a particle in the highly charged plasma. The JYFL team also elaborates the magnetic and technical design of the unconventional ion source named CUBE. The R&D work includes, in addition, the commissioning and operation of the high-performance 18 GHz ECRIS, HIISI. The instability measurements have revealed new information about the parameters affecting the onset of the plasma instabilities and shown that different instability modes exist. The ion-beam transient studies have given information about the cumulative life-time of highly-charged ions convergent with the ion temperatures deduced from the Doppler broadening of emission lines. The CUBE prototype has a minimum-B quadrupole magnetic field topology, similar to ARC-ECRIS, and its all-permanent magnet structure has been optimized for 10 GHz frequency. The CUBE design will be presented along with its commissioning status. The status and operational experience with HIISI will be reported as well.
 
slides icon Slides TUZZO02 [9.553 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUZZO02  
About • Received ※ 28 September 2020 — Revised ※ 09 November 2020 — Accepted ※ 03 December 2020 — Issue date ※ 05 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZO03
Study on the Correlation between Energy Distribution of Electrons Lost from the Confinement and Plasma Bremsstrahlung on a min-B ECR Plasmas  
 
  • B.S. Bhaskar, T. Thuillier
    LPSC, Grenoble Cedex, France
  • B.S. Bhaskar, T. Kalvas, H.A. Koivisto, R.J. Kronholm, M.S.P. Marttinen, O.A. Tarvainen, V. Toivanen
    JYFL, Jyväskylä, Finland
  • I. Izotov, V. Skalyga
    IAP/RAS, Nizhny Novgorod, Russia
  • O.A. Tarvainen
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: The work has received funding from the Academy of Finland under the Academy of Finland Project funding (No. 315855) and from University Grenoble Alps under EMERGENCE-project.
The study of plasma bremsstrahlung has been used as a diagnostic tool for understanding the behavior of confined plasma in Electron Cyclotron Resonance Ion Sources (ECRIS). In order to understand the relation connecting the confined plasma and the electrons escaping the confinement, a series of measurements have been made to measure the bremsstrahlung produced in the axial and radial direction along with the Lost Electron Energy Distribution (LEED) axially on JYFL 14 GHz ECR. We present here the effect of various source parameters on the axial and radial bremsstrahlung along with the LEED on a min-B confined ECR plasma. The measured LEED has been found to show a correlation with bremsstrahlung measurement and also have observed as a potential diagnostic method for instability. The explanation for observed LEED and bremsstrahlung trends is provided.
 
slides icon Slides TUZZO03 [1.520 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZO04 Status of the 60 GHz ECR Ion Source Research 102
 
  • T. André, J. Angot, M.A. Baylac, P. Sole, T. Thuillier
    LPSC, Grenoble Cedex, France
  • F. Debray
    GHMFL, Grenoble, France
  • I. Izotov, V. Skalyga
    IAP/RAS, Nizhny Novgorod, Russia
 
  SEISM is a compact ECR ion source operating at 60 GHz developed up to 2014. The prototype uses a magnetic cusp to confine the plasma. This simple magnetic geometry was chosen to allow the use of polyhelix coils (developed at the LNCMI, Grenoble) to generate a strong magnetic confinement featuring a closed ECR surface at 2.1 T. The plasma is sustained by a 300 kW microwave pulse of 1 ms duration and with a 2 Hz repetition rate. Previous experiments at LNCMI have successfully demonstrated the establishment of the nominal magnetic field and the extraction of ion beams with a current density up to ~ 1A/cm2. The presence of "afterglow" peaks was also observed, proving the existence of ion confinement in a cusp ECR ion source. The last run was prematurely stopped but the project restarted in 2018 and new experiments are planned in 2021. A new transport beam line has been designed to improve ion beam transport towards the beam detectors. Short- and long-term research plans are presented, including numerical simulations of the beam transport line and future upgrades of the ion source with the main goal to transform the high current density measured into a real high intensity ion beam.  
slides icon Slides TUZZO04 [5.933 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUZZO04  
About • Received ※ 28 September 2020 — Revised ※ 15 January 2021 — Accepted ※ 14 February 2021 — Issue date ※ 14 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)