Ultra-High Current Density Produced by a 60 GHz ECR Ion Source

T. André¹, T. Thuillier¹, P. Sole¹, M. Baylac¹, J. Angot¹, F. Debray², I. Izotov³, V. Skalyga³

¹Université Grenoble-Alpes, CNRS-IN2P3, Grenoble Institute of Engineering (INP), LPSC, 38000 Grenoble, France ²LNCMI, CNRS-UGA-UPS-INSA, 25, avenue des Martyrs, 38042 Grenoble, France ³Institute of Applied Physics, RAS, 46 Ulyanova St., 603950 Nizhny Novgorod, Russian Federation

XXIVth Workshop on ECR Ion Sources East Lansing, Sept. 28-30th 2020

- Sixty gigahErtz Ion Source using Megawatt magnets
- The source was developped during the EURISOL design study project
- Coils were constructed with the LNCMI, where the experiment is installed
- For the HF production, a Gyrotron, MW beam line, optical injection in the source done by IAP RAS Nizhny Novgorod
 - 60 GHz-300 kW/1 ms pulses/2 Hz
- First experimental session was performed in 2014 but stopped due to a metallic wire present in the water flow which damaged 2 of the 4 coils.
- The project restarted in 2019 with fresh IN2P3 funds

- 1 mm diameter extraction electrode
- Observation of current densities up to 900 mA/cm² in steady plateau
- Observation of transient reproducible current densities up to 1.8 A/cm²

- Observation of afterglow peaks
- Evidence of ion confinement in an ECR CUSP!

XXIVth Workshop on ECR Ion Sources East Lansing, Sept. 28-30th 2020

- Afterglow peaks of different charge states are not synchronous in a CUSP
 - AFG peaks are synchronous in a classical Min-B ECRIS
 - Effect yet not understood

- New experiments to be scheduled in 2021
- Improve experiment:
 - New plasma chamber \rightarrow improve the vacuum level (10⁻⁵ \rightarrow 10⁻⁷ mbar)
 - Increase High voltage $(30 \rightarrow 40 \text{ kV})$
 - Design of a new beam transport line \rightarrow add of a quadrupole triplet and dipole with a larger gap (60 \rightarrow 90 mm) \rightarrow transmission improved
 - Installation of a new overhead crane \rightarrow optimize implantation of the experiment

- Reproduce previous data
- Investigate further afterglow peaks
- Make systematic measurements as a function of the source parameters
 - magnetic field, pressure, HF power, biased radial ring
- Measure beam emittance with a pepperpot
- Study plasma stability with appropriate detectors
 - RF trigger, time resolved xray counter
- Lost electron energy distribution measurements

PACIFICS EQUIPEX: Joint CEA / IN2P3 Research program application filed in June 2020, including a work package dedicated to the enhancement of high intensity beams for the next generation accelerators

- Relocate the SEISM source at the LPSC \rightarrow Replace the resistive coils by SC ones
- Upgrade the 60 GHz gyrotron HVPS to 20 kW CW operation
- Open the future equipment to collaboration with other communities (Plasma, Astrophysics, ...)

Goal:

- Produce >100 mA of a medium charge state ion beam in CW operation extending the collaboration to CEA IRFU experts
- Investigate the 60 GHz ECR plasma with diagnostics
- Study beam emittance and space charge neutralisation

60GHz ECR ion source Pacifics Superconductive coils

- Preliminary design under progress, NbTi wire @4K considered
 - Objectives: Closed CUSP minimum B surface at 60 GHz with ECR surface 1 cm away from the plasma chamber
 - Example: CUSP configuration for a 250 mm diameter plasma chamber

Parametric study

XXIVth Workshop on ECR Ion Sources East Lansing, Sept. 28-30th 2020

THANK YOU FOR YOUR ATTENTION

