Author: Shen, Z.
Paper Title Page
MOWZO01 FECR Ion Source Development and Challenges 1
 
  • L.T. Sun, Y. Chen, M.Z. Guan, J.W. Guo, J.B. Li, L.B. Li, L.X. Li, W. Lu, E.M. Mei, X.J. Ou, Z. Shen, X.D. Wang, B.M. Wu, W. Wu, C.J. Xin, X.Z. Zhang, H.W. Zhao, S.J. Zheng, L. Zhu
    IMP/CAS, Lanzhou, People’s Republic of China
  • Z. Shen, L.T. Sun
    UCAS, Beijing, People’s Republic of China
 
  FECR or the First 4th generation ECR ion source is under development at Institute of Modern Physics (IMP) since 2015. This ion source is aiming to extract intense highly charged heavy ion beams in the order of emA from the dense plasma heated with 45 GHz microwave power. To provide effective magnetic confinement to the 45 GHz ECR plasma, a state of the art Nb3Sn magnet with min-B configuration is a straightforward technical path. As there is no much precedent references, it has to be designed, prototyped at IMP through in-house development. Meanwhile, other physics and technical challenges to a 4th generation ECR ion source are also tackled at IMP to find feasible solutions. This paper will give a brief review of the critical issues in the development of FECR ion source. A detailed report on the status of FECR prototype magnet development will be presented.  
slides icon Slides MOWZO01 [16.578 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOWZO01  
About • Received ※ 27 September 2020 — Revised ※ 02 October 2020 — Accepted ※ 30 November 2020 — Issue date ※ 07 August 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXZO01
High Intensity Ion Beam Extraction System for FECR  
 
  • Z. Shen, X. Fang, J.W. Guo, Z.H. Jia, Y.G. Liu, W. Lu, L.T. Sun, Y. Yang, X.Z. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
  • L.T. Sun
    UCAS, Beijing, People’s Republic of China
 
  To meet the beam requirements of High Intensity heavy ion Accelerator Facility (HIAF), the Institute of Modern Physics is developing a Fourth generation ECR ion source (FECR). Targeting at the operation frequency of 45 GHz, FECR is expected to produce very high intensity highly charged heavy ion beams, such as 1.0 emA 238U35+, 2 emA 78Kr19+, 10 emA 16O6+, etc. Based on the records with the 3rd generation ECR ion source operating at 24-28 GHz, the corresponding total drain current of FECR could reach 20-60 emA. To extract such high intensity multi-charged ion beams from the source with high beam quality and transmission efficiency, conventional diode or triode extraction system might not be suitable, and therefore a 4-electrode extraction system with a total extraction voltage of 50 kV is designed to mitigate the space charge influences and minimize the beam emittance growth in the extraction region. In this paper, a 3D model of the FECR extraction system is built using the IBSimu code. The electrode angles, voltages and electrode spacings are optimized for different ion beam conditions respectively. Beam properties comparison of various simulation conditions are presented.  
slides icon Slides WEXZO01 [7.712 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)