

FECR Ion Source Development and Challenges

L. Sun, H. W. Zhao

W. Wu, B. M. Wu, J. W. Guo, X. Z. Zhang, Y. Q. Chen, E. M. Mei, S. J. Zheng, L. Zhu, X. D. Wang, X. J. Ou, C. J. Xin, M. Z. Guan, W. Lu, L. B. Li, L. X. Li, J. B. Li, Z. Shen

Institute of Modern Physics, CAS, 730000, Lanzhou, China

ECRIS'20, Sept. 28~30, 2020, Virtual Conference, hosted by MSU

Outline

□Intense HCI Beam Needs

□ Status of Intense HCI Beam Production

Perspectives of Next Generation ECRIS

□ Status of FECR Development

♦ 45 GHz Nb₃Sn Magnet Development

Conventional Ion Source Physics & Technologies

□Summary

Intense HCI Beam Needs by Accelerators

Ar¹²⁺ and U^{3x+} beam intensities evolution over years

L. Sun, ECRIS2020, Virtual Conf., 3/32

Intense HCI Beam Needs of HIAF

L. Sun, ECRIS2020, Virtual Conf., 4/32

Status of Intense HCI Beam Production

L. Sun, ECRIS2020, Virtual Conf., 5/32

Status of Intense HCI Beam Production

Perspectives of Next Generation ECRIS

Significance:

Ultimate conditions for physics with low energy HCI beams:

- Material irradiation research
- Highly charged atomic physics
- **Low energy nuclear physics**

Prototyping for HIAF:

- **45 GHz ECR Ion Source**
- **81.25 MHz CW 4-vane RFQ**
- Intense heavy ion beam
 - production, transmission and

acceleration

Perspectives of Next Generation ECRIS

FECR (First 4th generation ECR ion source)

H. W. Zhao et al., Review of Scientific Instruments 89, 052301 (2018)

L. Sun, ECRIS2020, Virtual Conf., 8/32

Perspectives of Next Generation ECRIS: Challenges

FECR (First 4th Generation ECR ion source)

- Reliable SC-magnet for 45 GHz plasma confinement
- Effective coupling to the plasma of 20 kW/45 GHz microwave power
- 20 kW microwave heated plasma operation reliability and stability: Plasma chamber and dynamic stability
- Strong bremsstrahlung radiation problems
 - Heat sink in cryostat
 - HV insulator degradation
 - Risk of coil epoxy degradation
- Intense high charge state ion beam (20-40 emA) extraction, transport and beam quality control
- Intense metallic beam production, especially of refractory materials: U, W, Ta, Mo, Ti, Ni...

Liangting Sun, ICFA-Newsletter 73, p34.

Status of FECR Development: Magnet

Cold mass

- High quality reliable Nb₃Sn sextupole coil production
- Precise and efficient pretension and clamping structure
- Fast quench detection and active protection

Cryostat

- Safe suspension system for operation and transport of 3.5 tons cold mass
- Precise installation and alignment of cold mass
- High voltage safe instrumentation
- Sufficient dynamic cooling power @4.2 K

Status of FECR Development : Nb₃Sn magnet

L. Sun, ECRIS2020, Virtual Conf., 11/32

Status of FECR Development : Nb₃Sn Coil

L. Sun, ECRIS2020, Virtual Conf., 12/32

Status of FECR Development : Nb₃Sn Coil

L. Sun, ECRIS2020, Virtual Conf., 13/32

Status of FECR Development : Nb₃Sn Coil

ECRIS 2020

Status of FECR Development : structure

¹/₂ prototype with Al dummy coil mockup

Whole process Strain- Guaged

L. Sun, ECRIS2020, Virtual Conf., 15/32

Status of FECR Development : ¹/₂ coldmass

Status of FECR Development : Cold Test

- Solenoid only energized to 100% design current 600 A
- No quenches!
- Field consistent with calculated

- Sextupole only energized to 90% design current= 671 A (power supply malfunction)
- No quenches!
- Field consistent with calculated

L. Sun, ECRIS2020, Virtual Conf., 17/32

Status of FECR Development : Quench protection

Sextupole passive quench protection

E. Ravaioli, et al., IEEE Trans. Appl. Supercond., vol. 28, no. 3, April 2018, Art. no. 4700906

Fast quench detection (~20 mV, 10 ms) system based on FPGA

Flux Jump Signal during Coil Ramping

Flux jump adds additional difficulty to quench protection and coil safety

Status of FECR Development : Cryogenic system

Key parameters of FECR cryostat

Parameters	Value	Note
Operation Temp. (K)	4.3 K	
Magnet Cooling	LHe bathing and "0" boiling-off	
Stored Energy (MJ)	~1.6	100% currents
Required heat load (W)	≥ 12	~2 W static at 100% currents
Warm Bore (mm)	Ø162	
LHe Volume (L)	~330	
Cryocoolers	6 two-stage + 1 single stage coolers	Cold service enabled
Dimension (mm)	L1456 imes Ø1200 $ imes$ H2690	
Total weight (ton)	~6.1	

ECRIS 2020

Status of FECR Development : Cryogenic system

	20		KDE422制 KDE422 L	冷机制冷量/5 oad Map /50Ha	0Hz(参考) : (for reference	e)	
	18	. (M)	1:	一级冷量(₩ . st Stage cooling o	apacity (W)	80W	-
	(k) erature (K	- ▲ 20\ → 20\	0W 20W	40W	60W	-	-
	司令詣度 age tempo	. \$\$ 00 15 . 11 Stage . 11 June 100	w v		-		
	- 11/级f 9 2nd stu 4	5W •	£,		•		
E.	2 0	- ow	••		KD	E422	-
	2	20 4	0 6 	^{0 8} 级制冷温度(stage temperat	0 10 K) ture(K)	00 120	

Model	1 st Stage	2 nd Stage
CH-110	130 W@50 K	N/A
KDE422	~20 W@50 K	≥2.2 W@4.2 K
RDE-418D4	~42 W@50 K	≥1.8 W@4.2 K
Total	~316 W@50 K	≥12 W@4.2 K

Status of FECR Development : Cryogenic system

- Localized heat sink strongly related to field homogeneity
- Field homogeneity:
 - $<1\% \rightarrow$ concentricity $\Delta r < 0.4$ mm
 - <0.5% \rightarrow concentricity Δr < 0.2 mm

Status of FECR Development : Conventional Parts

Parameters	3 rd G. ECRIS	45 GHz FECR	Increased by	
Microwave Power (kW)	~10	>20	>2	
Ts (keV)	50~60	80~100	>1.5	
Microwave Length	~10	~6	/	
(mm)	10		,	
Max. Plasma Density	11/10]3	$2 (X10]^{3}$		
(cm^{-3})	$\sim 1 \times 10^{13}$	$\sim 2.6 \times 10^{13}$	>2.6	
Total Beam Available	10.20	26.52		
(mA)	10~20	20~32	>2.0	

L. Sun, ECRIS2020, Virtual Conf., 22/32

The

Status of FECR Development : µW coupling

45 GHz Microwave System for FECR

- 45 GHz/20 kW microwave transmission system based on Quasi-optical design
- First 45 GHz ECR plasma with SECRAL-II ion source
- Efficient transmission and coupling demonstrated

J. W. Guo, et al., AIP Conference Proceedings 2011, 090001 (2018)

L. Sun, ECRIS2020, Virtual Conf., 23/32

Tinte

Status of FECR Development : µW coupling

About multi-frequency ECRH

- Secondary or multi-frequency ECRH is essential
- Optimum frequencies to suppress kinetic instabilities?
- Needed power? (4~5 kW)

L. Sun, ECRIS2020, Virtual Conf., 24/32

Status of FECR Development : Plasma Chamber

Status of FECR Development : Plasma Chamber

	P (k\\/)	T on Al wall	T _{max} of water at the	
			hottest point	
1	10 : averagely distributed	174°C	88°C	
2	10 : Gaussian distributed	159°C	78°C	
3	15 : Gaussian distributed	229°C	107°C	
4	20 : Gaussian distributed	299°C	137°C	
	Waton	flow notes 7 I /m	in with miana abannal	

Water flow rate: 7 L/min with micro-channel

Water temperature distribution at the chamber wall of weakest plasma confinement point

Micro-channel structure of 0.4 mm imes 20

Please see Guo's talk 1147 on Tuesday

L. Sun, ECRIS2020, Virtual Conf., 26/32

Tinte

Status of FECR Development : Bremsstrahlung

L. Sun, ECRIS2020, Virtual Conf., 27/32

Status of FECR Development : Insulators

Yellowish PEEK insulator after high power operation (1.5 mm Ta shielding)

D Main insulator is replaceable

What if Coil epoxy degrades after long time exposure, which literally needs high quality of insulation property (5 kV standard)

ECRIS 2020

Status of FECR Development : Uranium Beam

Uranium beam production with HTO

Wang Lu @ talk 1155, on Tuesday

L. Sun, ECRIS2020, Virtual Conf., 29/32

Status of FECR Development : Uranium Beam

L. Sun, ECRIS2020, Virtual Conf., 30/32

Higher extraction voltage==

- Higher beam transmission efficiency
- Better beam quality in terms of SPC

Beam emittance degradation not proportional to *I_q* Space charge not dominant at extraction and transmission
 Plasma condition and beam extraction critical

Y. Yang, et al., Phys. Rev. Accel. Beams, 22, 110101 (2019)

L. Sun, ECRIS2020, Virtual Conf., 32/32

8

6

-175

-170

26+/0²⁺

-180

Evidence of SPC not dominant in ion source extraction and transmission

L. Sun, ECRIS2020, Virtual Conf.,

33/32

- □ Max. 50 kV extraction voltage
- □ 4-electrode extraction system
- Variable beam extraction optics
- Dural-solenoid solution before dipole magnet (independent control of beam focusing and matching)

Z. Shen @ talk 1142, on Wednesday

L. Sun, ECRIS2020, Virtual Conf., 34/32

Summary

- Reliable and safe SC-magnet for 45 GHz plasma confinement
- Effective coupling to the plasma of 20 kW/45 GHz microwave power

◆20 kW microwave heated plasma operation reliability and stability:

Strong bremsstrahlung radiation problems

Intense high charge state ion beam (20-40 emA) extraction, transport and beam quality control

Intense metallic beam production, especially of refractory materials: U, W, Ta, Mo, Ti, Ni...

Acknowledgement

Xi'an Superconducting Magnet Technology Inc. • Coil fabrication

Cold mass fabrication and assembly

Bruker OST LLC. • Nb₃Sn Wire

Western Superconducting Tech Co., Ltd. • Nb₃Sn Wire

• Wire braiding

Lanzhou Kejin Taiji New Technology Co., Ltd.

- Mirror structure
- Mechanical mapping

Shanghai Chenguang Medical Technologies Co., Ltd.

Cryogenic system fabrication and integration

GyCOM Co., Ltd.

• Gyrotron microwave generator and microwave transmission solutions

Lawrence Berkeley National Laboratory

Coldmass structure design

RIKEN • High temperature oven

Fruitful discussions and suggestions:

- D. Xie, C. Lyneis, D. Hitz, T. Thuiller, T. Nakagawa
- O. Tarvainen, E. Ravaioli, X. J. Liu, W. Kasparek

Welcome collaborations and Postdoc research !!

L. Sun, ECRIS2020, Virtual Conf., 36/32